Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1971 Jan;50(1):69–76. doi: 10.1172/JCI106485

Characteristics of NaCl and water transport in the renal proximal tubule

Juha P Kokko 1, Maurice B Burg 1, Jack Orloff 1
PMCID: PMC291894  PMID: 5543883

Abstract

Renal proximal tubular transport of salt and water has been examined using isolated perfused rabbit tubules. In this method direct measurements can be made under controlled conditions not readily achieved in vivo. The results are in general agreement with previous micropuncture studies in other species, supporting the validity of both sets of measurements.

In the present studies, absorption of sodium salts and water occurred without change in the concentration of Na in the lumen except when a poorly reabsorbed solute (raffinose) was present, in which case, mean concentration of Na in the lumen reached a steady-state value 33-35 mEq liter-1 less than in the bath. The tubule is very permeable to sodium salts (sodium permeability = 9.3 × 10-5 cm sec-1, σNaCl = 0.68-(0.71) and to water (hydraulic conductivity [Lp] = 2.9 to 6.3 × 10-5 cm sec-1 atm-1). Net reabsorptive flux of Na was only 20% of the unidirectional Na flux.

The steady-state concentration difference for Na in the presence of raffinose and σNaCl in the present studies was the same as previously found by micropuncture in the rat. On the other hand Na permeability, net Na transport rate, and Lp were all from one-half to one-third as great in the isolated rabbit tubule as in the rat in vivo. Apparently, although the transport mechanisms appear to be basically the same in the two species, there are fewer transport units and passive permeability paths per unit length in the rabbit tubule than in the rat.

Full text

PDF
72

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Baldamus C. A., Hierholzer K., Rumrich G., Stolte H., Uhlich E., Ullrich K. J., Wiederholt M. Natriumtransport in den proximalen Tubuli und den Sammelrohren bei Variation der Natriumkonzentration im umgebenden Interstitium. Pflugers Arch. 1969;310(4):354–368. doi: 10.1007/BF00587244. [DOI] [PubMed] [Google Scholar]
  2. Bennett C. M., Brenner B. M., Berliner R. W. Micropuncture study of nephron function in the rhesus monkey. J Clin Invest. 1968 Jan;47(1):203–216. doi: 10.1172/JCI105710. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bennett C. M., Clapp J. R., Berliner R. W. Micropuncture study of the proximal and distal tubule in the dog. Am J Physiol. 1967 Nov;213(5):1254–1262. doi: 10.1152/ajplegacy.1967.213.5.1254. [DOI] [PubMed] [Google Scholar]
  4. Burg M. B., Orloff J. Control of fluid absorption in the renal proximal tubule. J Clin Invest. 1968 Sep;47(9):2016–2024. doi: 10.1172/JCI105888. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Burg M. B., Orloff J. Effect of temperature and medium K on Na and K fluxes in separated renal tubules. Am J Physiol. 1966 Oct;211(4):1005–1010. doi: 10.1152/ajplegacy.1966.211.4.1005. [DOI] [PubMed] [Google Scholar]
  6. Burg M., Grantham J., Abramow M., Orloff J. Preparation and study of fragments of single rabbit nephrons. Am J Physiol. 1966 Jun;210(6):1293–1298. doi: 10.1152/ajplegacy.1966.210.6.1293. [DOI] [PubMed] [Google Scholar]
  7. Grantham J. J., Burg M. B. Effect of vasopressin and cyclic AMP on permeability of isolated collecting tubules. Am J Physiol. 1966 Jul;211(1):255–259. doi: 10.1152/ajplegacy.1966.211.1.255. [DOI] [PubMed] [Google Scholar]
  8. KEDEM O., KATCHALSKY A. Thermodynamic analysis of the permeability of biological membranes to non-electrolytes. Biochim Biophys Acta. 1958 Feb;27(2):229–246. doi: 10.1016/0006-3002(58)90330-5. [DOI] [PubMed] [Google Scholar]
  9. ULLRICH K. J., RUMRICH G., FUCHS G. WASSERPERMEABILITAET UND TRANDTUBULAERER WASSERFLUSS CORTICALER NEPHRONABSCHNITTE BEI VERSCHIEDENEN DIURESEZUSTAENDEN. Pflugers Arch Gesamte Physiol Menschen Tiere. 1964 Jul 1;280:99–119. [PubMed] [Google Scholar]
  10. WINDHAGER E. E., GIEBISCH G. ELECTROPHYSIOLOGY OF THE NEPHRON. Physiol Rev. 1965 Apr;45:214–244. doi: 10.1152/physrev.1965.45.2.214. [DOI] [PubMed] [Google Scholar]
  11. WINDHAGER E. E., GIEBISCH G. Micropuncture study of renal tubular transfer of sodium chloride in the rat. Am J Physiol. 1961 Mar;200:581–590. doi: 10.1152/ajplegacy.1961.200.3.581. [DOI] [PubMed] [Google Scholar]
  12. Wright E. M., Diamond J. M. An electrical method of measuring non-electrolyte permeability. Proc R Soc Lond B Biol Sci. 1969 Mar 18;171(1028):203–225. doi: 10.1098/rspb.1969.0020. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES