Summary
A great deal is now known about the mechanisms of conditioned fear acquisition and expression. More recently, the mechanisms of inhibition of conditioned fear have become the subject of intensive study. The major model system for the study of fear inhibition in the laboratory is extinction, in which a previously fear conditioned organism is exposed repeatedly to the fear-eliciting cue in the absence of any aversive event and the fear conditioned response declines. It is well established that extinction is a form of new learning as opposed to forgetting or “unlearning” of conditioned fear, and it is hypothesized that extinction develops when sensory pathways conveying sensory information to the amygdala come to engage GABAergic interneurons through forms of experience-dependent plasticity such as long-term potentiation. Several laboratories currently are investigating methods of facilitating fear extinction in animals with the hope that such treatments might ultimately prove to be useful in facilitating exposure-based therapy for anxiety disorders in clinical populations. This review discusses the advances that have been made in this field and presents the findings of the first major clinical study to examine the therapeutic utility of a drug that facilitates extinction in animals. It is concluded that extinction is an excellent model system for the study of fear inhibition and an indispensable tool for the screening of putative pharmacotherapies for clinical use.
Key Words: Extinction, fear, NMDA, d-cycloserine, psychotherapy, cognitive behavioral therapy
References
- 1.Rodrigues SM, Schafe GE, LeDoux JE. Molecular mechanisms underlying emotional learning and memory in the lateral amygdala. Neuron. 2004;44:75–91. doi: 10.1016/j.neuron.2004.09.014. [DOI] [PubMed] [Google Scholar]
- 2.Aggleton JP. The amygdala. New York: Oxford University Press; 2000. [Google Scholar]
- 3.Herman JL. Trauma and recovery. New York: BasicBooks; 1992. [Google Scholar]
- 4.Gale GD, Anagnostaras SG, Godsil BP, Mitchell S, et al. Role of the basolateral amygdala in the storage of fear memories across the adult lifetime of rats. J Neurosci. 2004;24:3810–3815. doi: 10.1523/JNEUROSCI.4100-03.2004. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 5.Rescorla RA, Wagner AR, et al. A theory of Pavlovian conditioning: variations in the effectiveness of reinforcement and nonreinforcement. In: Black A, Prokasy W, et al., editors. Classical conditioning II. New York: Appleton-Century-Crofts; 1972. pp. 64–99. [Google Scholar]
- 6.Hawkins RD, Kandel ER. Is there a cell-biological alphabet for simple forms of learning? Psychol Rev. 1984;91:375–391. doi: 10.1037/0033-295X.91.3.375. [DOI] [PubMed] [Google Scholar]
- 7.Robbins S. Mechanisms underlying spontaneous recovery in autoshaping. J Exp Psychol Anim Behav Process. 1990;16:235–249. doi: 10.1037/0097-7403.16.3.235. [DOI] [Google Scholar]
- 8.Bouton ME, Bolles RC. Role of conditioned contextual stimuli in reinstatement of extinguished fear. J Exp Psychol Anim Behav Process. 1979;5:368–378. doi: 10.1037/0097-7403.5.4.368. [DOI] [PubMed] [Google Scholar]
- 9.Rescorla RA, Heth CD. Reinstatement of fear to an extinguished conditioned stimulus. J Exp Psychol Anim Behav Process. 1975;1:88–96. doi: 10.1037/0097-7403.1.1.88. [DOI] [PubMed] [Google Scholar]
- 10.McSweeney FK, Swindell S. Common processes may contribute to extinction and habituation. J Gen Psychol. 2002;129:364–400. doi: 10.1080/00221300209602103. [DOI] [PubMed] [Google Scholar]
- 11.Davis M, File SE, et al. Intrinsic and extrinsic habituation and sensitization: implications for the design and interpretation of experiments. In: Peeke H, Petrinovich L, et al., editors. Habituation and the behaving organism. New York: Academic Press; 1984. pp. 287–323. [Google Scholar]
- 12.Marlin NA, Miller RR. Associations to contextual stimuli as a determinant of long-term habituation. J Exp Psychol Anim Behav Process. 1981;7:313–333. doi: 10.1037/0097-7403.7.4.313. [DOI] [PubMed] [Google Scholar]
- 13.Bouton ME. Context, time, and memory retrieval in the interference paradigms of Pavlovian learning. Psychol Bull. 1993;114:80–99. doi: 10.1037/0033-2909.114.1.80. [DOI] [PubMed] [Google Scholar]
- 14.Konorski J. Conditioned reflexes and neuronal organization. London: Cambridge University Press; 1948. [Google Scholar]
- 15.Pavlov I. Conditioned reflexes. Oxford: Oxford University Press; 1927. [Google Scholar]
- 16.Wagner AR. SOP: a model of automatic memory processing in animal behavior. In: Spear N, editor. Information processing in animals: memory mechanisms. Hillside, NJ: Lawrence Erlbaum Associates; 1981. [Google Scholar]
- 17.Cain CK, Blouin AM, Barad M. L-type voltage-gated calcium channels are required for extinction, but not for acquisition or expression, of conditional fear in mice. J Neurosci. 2002;22:9113–9121. doi: 10.1523/JNEUROSCI.22-20-09113.2002. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 18.Falls WA, Miserendino MJ, Davis M. Extinction of fear potentiated startle: blockade by infusion of an NMDA antagonist into the amygdala. J Neurosci. 1992;12:854–863. doi: 10.1523/JNEUROSCI.12-03-00854.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 19.Szapiro G, Vianna MR, McGaugh JL, Medina JH, et al. The role of NMDA glutamate receptors, PKA, MAPK and CaMKII in the hippocampus in extinction of conditioned fear. Hippocampus. 2003;13:53–58. doi: 10.1002/hipo.10043. [DOI] [PubMed] [Google Scholar]
- 20.Santini E, Ge H, Ren K, Pena de Ortiz S, et al. Consolidation of fear extinction requires protein synthesis in the medial prefrontal cortex. J Neurosci. 2004;24:5704–5710. doi: 10.1523/JNEUROSCI.0786-04.2004. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 21.Lattal KM, Abel T. Different requirements for protein synthesis in acquisition and extinction of spatial preferences and context-evoked fear. J Neurosci. 2001;21:5773–5880. doi: 10.1523/JNEUROSCI.21-15-05773.2001. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 22.Repa JC, Muller J, Apergis J, Desrochers TM, et al. Two different lateral amygdala cell populations contribute to the initiation and storage of memory. Nat Neurosci. 2001;4:724–731. doi: 10.1038/89512. [DOI] [PubMed] [Google Scholar]
- 23.Hobin JA, Goosens KA, Maren S. Context-dependent neuronal activity in the lateral amygdala represents fear memories after extinction. J Neurosci. 2003;23:8410–8416. doi: 10.1523/JNEUROSCI.23-23-08410.2003. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 24.Quirk GJ, Russo GK, Barron JL, Lebron K. The role of ventro-medial prefrontal cortex in the recovery of extinguished fear. J Neurosci. 2000;20:6225–6231. doi: 10.1523/JNEUROSCI.20-16-06225.2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 25.Myers KM, Davis M. Behavioral and neural analysis of extinction. Neuron. 2002;36:567–584. doi: 10.1016/S0896-6273(02)01064-4. [DOI] [PubMed] [Google Scholar]
- 26.Schafe GE, Nader K, Blair HT, LeDoux JE. Memory consolidation of Pavlovian fear conditioning: a cellular and molecular perspective. Trends Neurosci. 2001;24:540–546. doi: 10.1016/S0166-2236(00)01969-X. [DOI] [PubMed] [Google Scholar]
- 27.Lin CH, Lee CC, Gean PW. Involvement of a calcineurin cascade in amygdala depotentiation and quenching of fear memory. Mol Pharmacol. 2003;63:44–52. doi: 10.1124/mol.63.1.44. [DOI] [PubMed] [Google Scholar]
- 28.Lin CH, Yeh SH, Leu TH, Chang WC, et al. Identification of calcineurin as a key signal in the extinction of fear memory. J Neurosci. 2003;23:1574–1579. doi: 10.1523/JNEUROSCI.23-05-01574.2003. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 29.Castellano C, McGaugh JL. Retention enhancement with posttraining picrotoxin: lack of state dependency. Behav Neural Biol. 1989;51:165–170. doi: 10.1016/S0163-1047(89)90797-8. [DOI] [PubMed] [Google Scholar]
- 30.McGaugh JL, Introini-Collison IB, Nagahara AH, Cahill L, et al. Involvement of the amygdaloid complex in neuromodulatory influences on memory storage. Neurosci Biobehav Rev. 1990;14:425–431. doi: 10.1016/S0149-7634(05)80065-X. [DOI] [PubMed] [Google Scholar]
- 31.Izquierdo I, Pereira ME. Post-training memory facilitation blocks extinction but not retroactive interference. Behav Neural Biol. 1989;51:108–113. doi: 10.1016/S0163-1047(89)90725-5. [DOI] [PubMed] [Google Scholar]
- 32.Overton D. Experimental methods for the study of state-dependent learning. Fed Proc. 1974;33:1800–1813. [PubMed] [Google Scholar]
- 33.Bouton ME, Kenney FA, Rosengard C. State-dependent fear extinction with two benzodiazepine tranquilizers. Behav Neurosci. 1990;104:44–55. doi: 10.1037/0735-7044.104.1.44. [DOI] [PubMed] [Google Scholar]
- 34.Castellano C, McGaugh JL. Effects of post-training bicuculline and muscimol on retention: lack of state dependency. Behav Neural Biol. 1990;54:156–164. doi: 10.1016/0163-1047(90)91352-C. [DOI] [PubMed] [Google Scholar]
- 35.Harris JA, Westbrook RF. Evidence that GABA transmission mediates context-specific extinction of learned fear. Psychopharmacology (Berl) 1998;140:105–115. doi: 10.1007/s002130050745. [DOI] [PubMed] [Google Scholar]
- 36.Chhatwal JP, Myers KM, Ressler KJ, Davis M. Regulation of gephyrin and GABAA receptor binding within the amygdala after fear acquisition and extinction. J Neurosci. 2005;25:502–506. doi: 10.1523/JNEUROSCI.3301-04.2005. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 37.Ressler KJ, Paschall G, Zhou XL, Davis M. Regulation of synaptic plasticity genes during consolidation of fear conditioning. J Neurosci. 2002;22:7892–902. doi: 10.1523/JNEUROSCI.22-18-07892.2002. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 38.Carlson PJ, Singh JB, Zarate CA, Drevets WC, Manji HK. Neural circuitry and neuroplasticity in mood disorders: insights for novel therapeutic targets. NeuroRx. 2006;3:22–41. doi: 10.1016/j.nurx.2005.12.009. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 39.Pittenger C, Krystal JH, Coric V. Glutamate-modulating drugs as novel pharmacotherapeutic agents in the treatment of obsessive-compulsive disorder. NeuroRx. 2006;3:69–81. doi: 10.1016/j.nurx.2005.12.006. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 40.Miserendino MJD, Sananes CB, Melia KR, Davis M. Blocking of acquisition but not expression of conditioned fear-potentiated startle by NMDA antagonists in the amygdala. Nature. 1990;345:716–718. doi: 10.1038/345716a0. [DOI] [PubMed] [Google Scholar]
- 41.Kehoe E, Macrae M, Hutchinson C. MK-801 protects conditioned response from extinction in the rabbit nictitating membrane preparation. Psychobiology. 1996;24:127–135. [Google Scholar]
- 42.Lee H, Kim J. Amygdalar NMDA receptors are critical for new fear learning in previously fear-conditioned rats. J Neurosci. 1998;18:8444–8454. doi: 10.1523/JNEUROSCI.18-20-08444.1998. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 43.Baker JD, Azorlosa JL. The NMDA antagonist MK-801 blocks the extinction of Pavlovian fear conditioning. Behav Neurosci. 1996;110:618–620. doi: 10.1037/0735-7044.110.3.618. [DOI] [PubMed] [Google Scholar]
- 44.Cox J, Westbrook R. The NMDA receptor antagonist MK-801 blocks acquisition and extinction of conditioned hypoalgesia responses in the rat. Q J Exp Psychol. 1994;47B:187–210. [PubMed] [Google Scholar]
- 45.Santini E, Muller RU, Quirk GJ. Consolidation of extinction learning involves transfer from NMDA-independent to NMDA-dependent memory. J Neurosci. 2001;21:9009–9017. doi: 10.1523/JNEUROSCI.21-22-09009.2001. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 46.Walker DL, Ressler KJ, Lu KT, Davis M. Facilitation of conditioned fear extinction by systemic administration or intra-amygdala infusions of d-cycloserine as assessed with fear-potentiated startle in rats. J Neurosci. 2002;22:2343–2351. doi: 10.1523/JNEUROSCI.22-06-02343.2002. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 47.Ledgerwood L, Richardson R, Cranney J. Effects of d-cycloserine on extinction of conditioned freezing. Behav Neurosci. 2003;117:341–349. doi: 10.1037/0735-7044.117.2.341. [DOI] [PubMed] [Google Scholar]
- 48.Ledgerwood L, Richardson R, Cranney J. d-Cycloserine and the facilitation of extinction of conditioned fear: consequences for reinstatement. Behav Neurosci. 2004;118:505–513. doi: 10.1037/0735-7044.118.3.505. [DOI] [PubMed] [Google Scholar]
- 49.Porter AC, Felder CC. The endocannabinoid nervous system: unique opportunities for therapeutic intervention. Pharmacol Ther. 2001;90:45–60. doi: 10.1016/S0163-7258(01)00130-9. [DOI] [PubMed] [Google Scholar]
- 50.Kathuria S, Gaetani S, Fegley D, Valino F, et al. Modulation of anxiety through blockade of anandamide hydrolysis. Nat Med. 2003;9:76–81. doi: 10.1038/nm803. [DOI] [PubMed] [Google Scholar]
- 51.Katona I, Sperlagh B, Sik A, Kafalvi A, et al. Presynaptically located CB1 cannabinoid receptors regulate GABA release from axon terminals of specific hippocampal interneurons. J Neurosci. 1999;19:4544–4558. doi: 10.1523/JNEUROSCI.19-11-04544.1999. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 52.Freund TF, Hajos N. Excitement reduces inhibition via endocannabinoids. Neuron. 2003;38:362–365. doi: 10.1016/S0896-6273(03)00262-9. [DOI] [PubMed] [Google Scholar]
- 53.Simon AB, Gorman JM. Advances in the treatment of anxiety: targeting glutamate. NeuroRx. 2006;3:57–68. doi: 10.1016/j.nurx.2005.12.005. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 54.Haller J, Bakos N, Szirmay M, Ledent C, et al. The effects of genetic and pharmacological blockade of the CB1 cannabinoid receptor on anxiety. Eur J Neurosci. 2002;16:1395–1398. doi: 10.1046/j.1460-9568.2002.02192.x. [DOI] [PubMed] [Google Scholar]
- 55.Marsicano G, Wotjak CT, Azad SC, Bisogno T, et al. The endogenous cannabinoid system controls extinction of aversive memories. Nature. 2002;418:530–534. doi: 10.1038/nature00839. [DOI] [PubMed] [Google Scholar]
- 56.Chhatwal JP, Davis M, Maguschak KA, Ressler KJ. Enhancing cannabinoid neurotransmission augments the extinction of conditioned fear. Neuropsychopharmacology. 2005;30:516–524. doi: 10.1038/sj.npp.1300655. [DOI] [PubMed] [Google Scholar]
- 57.Willick ML, Kokkinidis L. Cocaine enhances the expression of fear potentiated startle: evaluation of state-dependent extinction and the shock sensitization of acoustic startle. Behav Neurosci. 1995;109:929–938. doi: 10.1037/0735-7044.109.5.929. [DOI] [PubMed] [Google Scholar]
- 58.El-Ghundi M, O’Dowd BF, George SR. Prolonged fear responses in mice lacking dopamine D1 receptor. Brain Res. 2001;892:86–93. doi: 10.1016/S0006-8993(00)03234-0. [DOI] [PubMed] [Google Scholar]
- 59.Nader K, LeDoux JE. Inhibition of the mesoamygdala dopaminergic pathway impairs the retrieval of conditioned fear associations. Behav Neurosci. 1999;113:891–901. doi: 10.1037/0735-7044.113.5.891. [DOI] [PubMed] [Google Scholar]
- 60.Ponnusamy R, Nissim HA, Barad M. Systemic blockade of D2-like dopamine receptors facilitates extinction of conditioned fear in mice. Learn Mem. 2005;12:399–406. doi: 10.1101/lm.96605. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 61.McGaugh JL, Cahill L, Roozendaal B. Involvement of the amygdala in memory storage: interaction with other brain systems. Proc Natl Acad Sci USA. 1996;93:13508–13514. doi: 10.1073/pnas.93.24.13508. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 62.McGaugh JL. Memory—a century of consolidation. Science. 2000;287:248–251. doi: 10.1126/science.287.5451.248. [DOI] [PubMed] [Google Scholar]
- 63.Cain CK, Blouin AM, Barad M. Adrenergic transmission facilitates extinction of conditional fear in mice. Learn Mem. 2004;11:179–187. doi: 10.1101/lm.71504. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 64.Berman DE, Dudai Y. Memory extinction, learning anew, and learning the new: dissociations in the molecular machinery of learning in cortex. Science. 2001;291:2417–2419. doi: 10.1126/science.1058165. [DOI] [PubMed] [Google Scholar]
- 65.Bisson JI. Post-traumatic stress counselling. Br J Hosp Med. 1997;57:112–112. [PubMed] [Google Scholar]
- 66.Mayou RA, Ehlers A, Hobbs M. Psychological debriefing for road traffic accident victims. Three-year follow-up of a randomised controlled trial. Br J Psychiatry. 2000;176:589–593. doi: 10.1192/bjp.176.6.589. [DOI] [PubMed] [Google Scholar]
- 67.Rose S, Bisson JI, Churchill R, Wessely S. Psychological debriefing for preventing posttraumatic stress disorder (PTSD) Cochrane Database Syst Rev. 2001;2:CD000560–CD000560. doi: 10.1002/14651858.CD000560. [DOI] [PubMed] [Google Scholar]
- 68.Southwick SM, Morgan A, Nagy LM, Bremner D, et al. Trauma related symptoms in veterans of Operation Desert Storm: a preliminary report. Am J Psychiatry. 1993;150:1524–1528. doi: 10.1176/ajp.150.10.1524. [DOI] [PubMed] [Google Scholar]
- 69.Charney DS, Woods SW, Goodman WK, Heninger GR. Neurobiological mechanisms of panic anxiety: biochemical and behavioral correlates of yohimbine-induced panic attacks. Am J Psychiatry. 1987;144:1030–1036. doi: 10.1176/ajp.144.8.1030. [DOI] [PubMed] [Google Scholar]
- 70.Southwick SM, Krystal JH, Morgan CA, Johnson D, et al. Abnormal noradrenergic function in posttraumatic stress disorder. Arch Gen Psychiatry. 1993;50:266–274. doi: 10.1001/archpsyc.1993.01820160036003. [DOI] [PubMed] [Google Scholar]
- 71.Ledgerwood L, Richardson R, Cranney J. d-Cycloserine facilitates extinction of learned fear: effects on reacquisition and generalized extinction. Biol Psychiatry. 2005;57:841–847. doi: 10.1016/j.biopsych.2005.01.023. [DOI] [PubMed] [Google Scholar]
- 72.Rescorla RA. Effect of US habituation following conditioning. J Comp Physiol Psychol. 1973;82:137–143. doi: 10.1037/h0033815. [DOI] [PubMed] [Google Scholar]
- 73.Richardson R, Ledgerwood L, Cranney J. Facilitation of fear extinction by d-cycloserine: theoretical and clinical implications. Learn Mem. 2004;11:510–516. doi: 10.1101/lm.78204. [DOI] [PubMed] [Google Scholar]
- 74.Denniston J, Chang R, Miller R. Massive extinction treatment attenuates the renewal effect. Learn Motiv. 2003;34:68–86. doi: 10.1016/S0023-9690(02)00508-8. [DOI] [Google Scholar]
- 75.Ressler KJ, Rothbaum BO, Tannenbaum L, Anderson P, et al. Cognitive enhancers as adjuncts to psychotherapy: use of d-cycloserine in phobic individuals to facilitate extinction of fear. Arch Gen Psychiatry. 2004;61:1136–1144. doi: 10.1001/archpsyc.61.11.1136. [DOI] [PubMed] [Google Scholar]
- 76.Rothbaum BO, Hodges LF, Kooper R, Opdyke D, et al. Effectiveness of computer-generated (virtual reality) graded exposure in the treatment of acrophobia. Am J Psychiatry. 1995;152:626–628. doi: 10.1176/ajp.152.4.626. [DOI] [PubMed] [Google Scholar]
- 77.Rothbaum BO, Hodges LF, Ready D, Graap K, et al. Virtual reality exposure therapy for Vietnam veterans with posttraumatic stress disorder. J Clin Psychiatry. 2001;62:617–622. doi: 10.4088/JCP.v62n0808. [DOI] [PubMed] [Google Scholar]
- 78.Rothbaum BO, Schwartz AC. Exposure therapy for posttraumatic stress disorder. Am J Psychother. 2002;56:59–75. doi: 10.1176/appi.psychotherapy.2002.56.1.59. [DOI] [PubMed] [Google Scholar]
- 79.Rothbaum BO, Hodges L, Kooper R. Virtual reality exposure therapy. J Psychother Pract Res. 1997;6:219–226. [PMC free article] [PubMed] [Google Scholar]
- 80.Baxter M, Lanthorn T, Frick K, Golski S, et al. d-Cycloserine, a novel cognitive enhancer, improves spatial memory in aged rats. Neurobiol Aging. 1994;15:207–213. doi: 10.1016/0197-4580(94)90114-7. [DOI] [PubMed] [Google Scholar]
- 81.Quartermain D, Mower J, Rafferty M, Herting R, et al. Acute but not chronic activation of the NMDA-coupled glycine receptor with d-cycloserine facilitates learning and retention. Eur J Pharmacol. 1994;257:7–12. doi: 10.1016/0014-2999(94)90687-4. [DOI] [PubMed] [Google Scholar]
- 82.Schuster GM, Schmidt WJ. d-Cycloserine reverses the working memory impairment of hippocampal-lesioned rats in a spatial learning task. Eur J Pharmacol. 1992;224:97–98. doi: 10.1016/0014-2999(92)94825-G. [DOI] [PubMed] [Google Scholar]
- 83.Thompson LT, Moskal JR, Disterhoft JF. Hippocampus dependent learning facilitated by a monoclonal antibody or d-cycloserine. Nature. 1992;359:638–641. doi: 10.1038/359638a0. [DOI] [PubMed] [Google Scholar]
- 84.Schwartz BL, Hashtroudi S, Herting RL, Schwartz P, et al. d-Cycloserine enhances implicit memory in Alzheimer patients. Neurology. 1996;46:420–424. doi: 10.1212/WNL.46.2.420. [DOI] [PubMed] [Google Scholar]
- 85.Tsai G, Falk W, Gunther J. A preliminary study of D-cycloserine treatment in Alzheimer’s disease. JNeuropsychiatry Clin Neurosci. 1998;10:224–226. doi: 10.1176/jnp.10.2.224. [DOI] [PubMed] [Google Scholar]
- 86.Laake K, Oeksengaard AR. d-Cycloserine for Alzheimer’s disease. Cochrane Database Syst Rev. 2002;2:CD003153–CD003153. doi: 10.1002/14651858.CD003153. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 87.Randolph C, Roberts J, Tierney M, Bravi D, et al. d-Cycloserine treatment of Alzheimer’s disease. Alzheimers Dis Assoc Disord. 1994;8:198–205. doi: 10.1097/00002093-199408030-00006. [DOI] [PubMed] [Google Scholar]
- 88.Fakouhi T, Jhee S, Sramek J, Benes C, et al. Evaluation of cycloserine in the treatment of Alzheimer’s disease. J Geriatric Psych Neurol. 1995;8:226–230. doi: 10.1177/089198879500800405. [DOI] [PubMed] [Google Scholar]
- 89.Parnas AS, Weber M, Richardson R. Effects of multiple exposures to d-cycloserine on extinction of conditioned fear in rats. Neurobiol Learn Mem. 2005;83:224–231. doi: 10.1016/j.nlm.2005.01.001. [DOI] [PubMed] [Google Scholar]