Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1971 Dec;50(12):2614–2625. doi: 10.1172/JCI106762

Quantitative assessment of the extent of myocardial infarction in the conscious dog by means of analysis of serial changes in serum creatine phosphokinase activity

William E Shell 1,2, John K Kjekshus 1,2, Burton E Sobel 1,2
PMCID: PMC292211  PMID: 5129313

Abstract

This study was designed to develop a method for quantitative assessment of infarct size in the conscious animal based on serial changes of serum creatine phosphokinase (CPK) activity. From 11 experiments in which myocardial CPK was injected intravenously in conscious dogs, the average CPK distribution space and average CPK fractional disappearance rate from serum were found to be 11.4% of body weight and 0.48% min respectively. In other experiments, myocardial infarction was produced in 22 conscious dogs by constriction of a left coronary artery snare and serum CPK activity was determined at frequent intervals for 24 hr. Since myocardial CPK depletion reflects infarct size, infarct size was determined directly by analysis of myocardial CPK content in the same animals 24 hr after coronary artery occlusion. CPK released from the infarct was determined from observed changes in serum CPK activity analyzed according to a model taking into account the fraction of CPK released from an infarct and the rates of appearance and disappearance of CPK activity from serum. Infarct size was calculated on the basis of observed changes in serum CPK and compared to infarct size determined directly by analysis of myocardial CPK depletion. Agreement was close and results from all experiments fit the equation: [infarct size (g) determined from serum CPK] = 1.13 × [infarct size (g) determined from myocardial CPK] - 1.3, r = 0.96, n = 22. The method described is useful for accurate assessment of infarct size in the conscious animal and for detection of modification of infarct size produced by pharmacologic interventions.

Full text

PDF
2615

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. AGRESS C. M., JACOBS H. I., GLASSNER H. F., LEDERER M. A., CLARK W. G., WROBLEWSKI F., KARMEN A., LADUE J. S. Serum transaminase levels in experimental myocardial infarction. Circulation. 1955 May;11(5):711–713. doi: 10.1161/01.cir.11.5.711. [DOI] [PubMed] [Google Scholar]
  2. AGRESS C. M., KIM J. H. Evaluation of enzyme tests in the diagnosis of heart disease. Am J Cardiol. 1960 Sep;6:641–649. doi: 10.1016/0002-9149(60)90267-8. [DOI] [PubMed] [Google Scholar]
  3. Bing R. J., Gudbjarnason S., Tschopp H., Braasch W. Molecular changes in myocardial infarction in heart muscle. Ann N Y Acad Sci. 1969 Jan 31;156(1):583–593. doi: 10.1111/j.1749-6632.1969.tb16753.x. [DOI] [PubMed] [Google Scholar]
  4. Braasch W., Gudbjarnason S., Puri P. S., Ravens K. G., Bing R. J. Early changes in energy metabolism in the myocardium following acute coronary artery occlusion in anesthetized dogs. Circ Res. 1968 Sep;23(3):429–438. doi: 10.1161/01.res.23.3.429. [DOI] [PubMed] [Google Scholar]
  5. CAULFIELD J., KLIONSKY B. Myocardial ischemia and early infarction: an electron microscopic study. Am J Pathol. 1959 May-Jun;35(3):489–523. [PMC free article] [PubMed] [Google Scholar]
  6. Cox J. L., McLaughlin V. W., Flowers N. C., Horan L. G. The ischemic zone surrounding acute myocardial infarction. Its morphology as detected by dehydrogenase staining. Am Heart J. 1968 Nov;76(5):650–659. doi: 10.1016/0002-8703(68)90164-6. [DOI] [PubMed] [Google Scholar]
  7. Harnarayan C., Bennett M. A., Pentecost B. L., Brewer D. B. Quantitative study of infarcted myocardium in cardiogenic shock. Br Heart J. 1970 Nov;32(6):728–732. doi: 10.1136/hrt.32.6.728. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Henry P. D., Bloor C. M., Sobel B. E. Increased serum creatine phosphokinase activity in experimental pulmonary embolism. Am J Cardiol. 1970 Aug;26(2):151–155. doi: 10.1016/0002-9149(70)90773-3. [DOI] [PubMed] [Google Scholar]
  9. JENNINGS R. B., SOMMERS H. M., KALTENBACH J. P., WEST J. J. ELECTROLYTE ALTERATIONS IN ACUTE MYOCARDIAL ISCHEMIC INJURY. Circ Res. 1964 Mar;14:260–269. doi: 10.1161/01.res.14.3.260. [DOI] [PubMed] [Google Scholar]
  10. Jennings R. B., Herdson P. B., Sommers H. M. Structural and functional abnormalities in mitochondria isolated from ischemic dog myocardium. Lab Invest. 1969 Jun;20(6):548–557. [PubMed] [Google Scholar]
  11. Jennings R. B., Sommers H. M., Herdson P. B., Kaltenbach J. P. Ischemic injury of myocardium. Ann N Y Acad Sci. 1969 Jan 31;156(1):61–78. doi: 10.1111/j.1749-6632.1969.tb16718.x. [DOI] [PubMed] [Google Scholar]
  12. Judah J. D., Ahmed K., McLean A. E. Pathogenesis of cell necrosis. Fed Proc. 1965 Sep-Oct;24(5):1217–1221. [PubMed] [Google Scholar]
  13. Kent S. P. Intracellular plasma protein: a manifestation of cell injury in myocardial ischemia. Nature. 1966 Jun 18;210(5042):1279–1281. doi: 10.1038/2101279b0. [DOI] [PubMed] [Google Scholar]
  14. Khouri E. M., Gregg D. E., Rayford C. R. Effect of exercise on cardiac output, left coronary flow and myocardial metabolism in the unanesthetized dog. Circ Res. 1965 Nov;17(5):427–437. doi: 10.1161/01.res.17.5.427. [DOI] [PubMed] [Google Scholar]
  15. Killen D. A., Tinsley E. A. Serum enzymes in experimental myocardial infarcts. Relation of blood levels of serum glutamic oxaloacetic transaminase, lactic dehydrogenase, and heat stable lactic dehydrogenase to size of experimental myocardial infarct. Arch Surg. 1966 Mar;92(3):418–422. doi: 10.1001/archsurg.1966.01320210098021. [DOI] [PubMed] [Google Scholar]
  16. Killip T., 3rd, Kimball J. T. Treatment of myocardial infarction in a coronary care unit. A two year experience with 250 patients. Am J Cardiol. 1967 Oct;20(4):457–464. doi: 10.1016/0002-9149(67)90023-9. [DOI] [PubMed] [Google Scholar]
  17. Kjekshus J. K., Sobel B. E. Depressed myocardial creatine phosphokinase activity following experimental myocardial infarction in rabbit. Circ Res. 1970 Sep;27(3):403–414. doi: 10.1161/01.res.27.3.403. [DOI] [PubMed] [Google Scholar]
  18. Kuhn L. A., Kline H. J., Goodman P., Johnson C. D., Marano A. J. Effects of isoproterenol on hemodynamic alterations, myocardial metabolism, and coronary flow in experimental acute myocardial infarction with shock. Am Heart J. 1969 Jun;77(6):772–783. doi: 10.1016/0002-8703(69)90411-6. [DOI] [PubMed] [Google Scholar]
  19. LEMLEY-STONE J., MERRILL J. M., GRACE J. T., MENEELY G. R. Transaminase in experimental myocardial infarction. Am J Physiol. 1955 Dec;183(3):555–558. doi: 10.1152/ajplegacy.1955.183.3.555. [DOI] [PubMed] [Google Scholar]
  20. MAJNO G., LA GATTUTA M., THOMPSON T. E. Cellular death and necrosis: chemical, physical and morphologic changes in rat liver. Virchows Arch Pathol Anat Physiol Klin Med. 1960;333:421–465. doi: 10.1007/BF00955327. [DOI] [PubMed] [Google Scholar]
  21. Maroko P. R., Kjekshus J. K., Sobel B. E., Watanabe T., Covell J. W., Ross J., Jr, Braunwald E. Factors influencing infarct size following experimental coronary artery occlusions. Circulation. 1971 Jan;43(1):67–82. doi: 10.1161/01.cir.43.1.67. [DOI] [PubMed] [Google Scholar]
  22. NACHLAS M. M., FRIEDMAN M. M., COHEN S. P. A METHOD FOR THE QUANTITATION OF MYOCARDIAL INFARCTS AND THE RELATION OF SERUM ENZYME LEVELS TO INFARCT SIZE. Surgery. 1964 May;55:700–708. [PubMed] [Google Scholar]
  23. NACHLAS M. M., SHNITKA T. K. Macroscopic identification of early myocardial infarcts by alterations in dehydrogenase activity. Am J Pathol. 1963 Apr;42:379–405. [PMC free article] [PubMed] [Google Scholar]
  24. NYDICK I., WROBLEWSKI F., LADUE J. S. Evidence for increased serum glutamic oxalacetic transaminase (SGO-T) activity following graded myocardial infarcts in dogs. Circulation. 1955 Aug;12(2):161–168. doi: 10.1161/01.cir.12.2.161. [DOI] [PubMed] [Google Scholar]
  25. Posen S. Turnover of circulating enzymes. Clin Chem. 1970 Feb;16(2):71–84. [PubMed] [Google Scholar]
  26. Rosalki S. B. An improved procedure for serum creatine phosphokinase determination. J Lab Clin Med. 1967 Apr;69(4):696–705. [PubMed] [Google Scholar]
  27. SAYEN J. J., SHELDON W. F. The heart muscle and the electrocardiogram in coronary disease difficulties of description and illustration of ventricular muscle lesions, with a method for their graphic representation in a myocardial map. Am Heart J. 1949 Nov;38(5):688-701, illust. doi: 10.1016/0002-8703(49)90526-8. [DOI] [PubMed] [Google Scholar]
  28. STRANDJORD P. E., THOMAS K. E., WHITE L. P. Studies on isocitric and lactic dehydrogenases in experimental myocardial infarction. J Clin Invest. 1959 Dec;38:2111–2118. doi: 10.1172/JCI103989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Wilkinson J. H. Clinical significance of enzyme activity measurements. Clin Chem. 1970 Nov;16(11):882–890. [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES