Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1972 Sep;51(9):2277–2283. doi: 10.1172/JCI107037

The effect of steroids and ammonium chloride acidosis on phosphoenolpyruvate carboxykinase in rat kidney cortex

I. Differentiation of the inductive processes and characterization of enzyme activities

I D Longshaw 1, C I Pogson 1
PMCID: PMC292392  PMID: 4639014

Abstract

The behaviour of rat kidney cortex phosphoenolpyruvate carboxykinase has been investigated under conditions of triamcinolone administration and ammonium chloride acidosis. The concentration of phosphoenolpyruvate carboxykinase as measured by enzyme activity and immunotitration was elevated under both conditions. The mechanism of induction is different in the two cases. At doses which produce maximum stimulation, the effects of steroid and ammonium chloride were additive; only the increment in enzyme activity produced by steroid was blocked by actinomycin D.

Phosphoenolpyruvate carboxykinase activities in all conditions investigated show similar behavior in dilute extracts: these experiments involved antibody titration, stability studies, and molecular weight determinations on sucrose gradients.

The molecular weight of phosphoenolpyruvate carboxykinase was also studied in undiluted extracts prepared by high-speed centrifugation; values were determined from sedimentation data obtained with a moving-partition cell as described by Yphantis and Waugh. Under these conditions, the apparent molecular weight of phosphoenolpyruvate carboxykinase was increased from 83,000 to 128,000 by ammonium chloride acidosis.

These results are discussed and a hypothesis regarding the mechanism of phosphoenolpyruvate carboxykinase regulation in kidney cortex is presented.

Full text

PDF
2280

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Alleyne G. A. Concentrations of metabolic intermediates in kidneys of rats with metabolic acidosis. Nature. 1968 Mar 2;217(5131):847–848. doi: 10.1038/217847a0. [DOI] [PubMed] [Google Scholar]
  2. Alleyne G. A., Scullard G. H. Renal metabolic response to acid base changes. I. Enzymatic control of ammoniagenesis in the rat. J Clin Invest. 1969 Feb;48(2):364–370. doi: 10.1172/JCI105993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. BRUCE H. M., PARKES A. S. Feeding and breeding of laboratory animals; a complete cubed diet for mice and rats. J Hyg (Lond) 1949 Jun;47(2):202–208. doi: 10.1017/s0022172400014479. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Ballard F. J., Hanson R. W. Purification of phosphoenolpyruvate carboxykinase from the cytosol fraction of rat liver and the immunochemical demonstration of differences between this enzyme and the mitochondrial phosphoenolpyruvate carboxykinase. J Biol Chem. 1969 Oct 25;244(20):5625–5630. [PubMed] [Google Scholar]
  5. Ballard F. J. Kinetic studies with cytosol and mitochondrial phosphoenolpyruvate carboxykinases. Biochem J. 1970 Dec;120(4):809–814. doi: 10.1042/bj1200809. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Chang H. C., Lane M. D. The enzymatic carboxylation of phosphoenolpyruvate. II. Purification and properties of liver mitochondrial phosphoenolpyruvate carboxykinase. J Biol Chem. 1966 May 25;241(10):2413–2420. [PubMed] [Google Scholar]
  7. Churchill P. C., Malvin R. L. Relation of renal gluconeogenesis to ammonia production in the rat. Am J Physiol. 1970 Feb;218(2):353–357. doi: 10.1152/ajplegacy.1970.218.2.353. [DOI] [PubMed] [Google Scholar]
  8. Flores H., Alleyne G. A. Phosphoenolpyruvate carboxykinase of kidney. Subcellular distribution and response to acid-base changes. Biochem J. 1971 Jun;123(1):35–39. doi: 10.1042/bj1230035. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Foster D. O., Lardy H. A., Ray P. D., Johnston J. B. Alteration of rat liver phosphoenolpyruvate carboxykinase activity by L-tryptophan in vivo and metals in vitro. Biochemistry. 1967 Jul;6(7):2120–2128. doi: 10.1021/bi00859a033. [DOI] [PubMed] [Google Scholar]
  10. GIBSON D. M., DAVISSON E. O., BACHHAWAT B. K., RAY B. R., VESTLING C. S. Rat liver lactic dehydrogenase. I. Isolation and chemical properties of the crystalline enzyme. J Biol Chem. 1953 Jul;203(1):397–409. [PubMed] [Google Scholar]
  11. GOLDBERG I. H., RABINOWITZ M., REICH E. Basis of actinomycin action. I. DNA binding and inhibition of RNA-polymerase synthetic reactions by actinomycin. Proc Natl Acad Sci U S A. 1962 Dec 15;48:2094–2101. doi: 10.1073/pnas.48.12.2094. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. GOLDSTEIN L., COPENHAVER J. H., Jr Relation of glutaminase I activity to glutamic acid concentration in the rat kidney. Am J Physiol. 1960 Feb;198:227–229. doi: 10.1152/ajplegacy.1960.198.2.227. [DOI] [PubMed] [Google Scholar]
  13. Goodman A. D., Fuisz R. E., Cahill G. F., Jr Renal gluconeogenesis in acidosis, alkalosis, and potassium deficiency: its possible role in regulation of renal ammonia production. J Clin Invest. 1966 Apr;45(4):612–619. doi: 10.1172/JCI105375. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Krebs H. A. Metabolism of amino-acids: The synthesis of glutamine from glutamic acid and ammonia, and the enzymic hydrolysis of glutamine in animal tissues. Biochem J. 1935 Aug;29(8):1951–1969. doi: 10.1042/bj0291951. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Longshaw I. D., Alleyne G. A., Pogson C. I. The effect of steroids and ammonium chloride acidosis on phosphoenolpyruvate carboxykinase in rat kidney cortex. II. The kinetics of enzyme induction. J Clin Invest. 1972 Sep;51(9):2284–2291. doi: 10.1172/JCI107038. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. MARTIN R. G., AMES B. N. A method for determining the sedimentation behavior of enzymes: application to protein mixtures. J Biol Chem. 1961 May;236:1372–1379. [PubMed] [Google Scholar]
  17. Preuss H. G., Weiss F. R., Adler S. Renal ammonia production in the presence of citric acid cycle blockade. Proc Soc Exp Biol Med. 1971 Mar;136(3):738–741. doi: 10.3181/00379727-136-35354. [DOI] [PubMed] [Google Scholar]
  18. RACKER E., KLYBAS V., SCHRAMM M. Tetrose diphosphate, a specific inhibitor of glyceraldehyde 3-phosphate dehydrogenase. J Biol Chem. 1959 Oct;234:2510–2516. [PubMed] [Google Scholar]
  19. RECTOR F. C., Jr, SELDIN D. W., COPENHAVER J. H. The mechanism of ammonia excretion during ammonium chloride acidosis. J Clin Invest. 1955 Jan;34(1):20–26. doi: 10.1172/JCI103058. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Sartorius O. W., Roemmelt J. C., Pitts R. F., Calhoon D., Miner P. THE RENAL REGULATION OF ACID-BASE BALANCE IN MAN. IV. THE NATURE OF THE RENAL COMPENSATIONS IN AMMONIUM CHLORIDE ACIDOSIS. J Clin Invest. 1949 May;28(3):423–439. doi: 10.1172/JCI102087. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Seubert W., Huth W. On the mechanism of gluconeogenesis and its regulation. II. The mechanism of gluconeogenesis from pyruvate and fumarate. Biochem Z. 1965 Nov 15;343(2):176–191. [PubMed] [Google Scholar]
  22. Simpson D. P., Sherrard D. J. Regulation of glutamine metabolism in vitro by bicarbonate ion and pH. J Clin Invest. 1969 Jun;48(6):1088–1096. doi: 10.1172/JCI106065. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Stinson R. A., Gutfreund H. Transient-kinetic studies of pig muscle lactate dehydrogenase. Biochem J. 1971 Jan;121(2):235–240. doi: 10.1042/bj1210235. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Stone W. J., Pitts R. F. Pathways of ammonia metabolism in the intact functioning kidney of the dog. J Clin Invest. 1967 Jul;46(7):1141–1150. doi: 10.1172/JCI105607. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES