Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1972 Nov;51(11):2916–2927. doi: 10.1172/JCI107116

The mechanism of intestinal uptake and transcellular transport of IgG in the neonatal rat

E Anthony Jones 1, Thomas A Waldmann 1
PMCID: PMC292442  PMID: 5080417

Abstract

The transport of immunoglobulins across the intestinal mucosa of neonatal rats provides an excellent model for the study of transcellular protein transport. The mechanism of intestinal uptake and transcellular transport of plasma proteins has been studied in 12-14-day old rats using intraduodenally administered radioiodinated proteins. Appreciable quantities of rat IgG, mouse IgG, rabbit IgG, and all four subclasses of human IgG were taken up by the intestinal wall (19-54% of administered dose at 4 hr) and transported to the animal (10-35% of administered dose at 4 hr). In contrast there was little or no uptake of human IgM, IgA, and IgE and little or no transport of human IgM, IgA, IgD, IgE, albumin, transferrin, and ceruloplasmin. Both the uptake and transport of labeled IgG were significantly inhibited by unlabeled IgG. Further insight into the transport process was obtained from the observation that an appreciable proportion of the label of IgG in intestinal wall homogenates, but not in plasma or intestinal washings, migrated in a sucrose ultracentrifugation gradient much more rapidly than did the administered 7S molecules. This pattern was not observed with other proteins studied. This apparent binding of labeled IgG was also markedly inhibited by unlabeled IgG. In subcellular fractionation studies of intestinal homogenates the complexed labeled IgG was shown to be associated predominantly with cell membrane rather than cell sap fractions. In addition IgG could be shown to bind to purified enterocyte microvillous membranes in vitro.

It is concluded that in the neonatal rat: (a) the major processes involved in both intestinal uptake and transport of IgG are specific and saturable; (b) intestinal transport is associated with complexing of IgG molecules with membranes, most probably with enterocyte microvillous membranes; and (c) the part of the IgG structure involved in this process is probably similar to that involved in the concentration-catabolism effect but is not identical to that mediating other non-antigen combining functions of IgG. Our data are consistent with the existence of specific receptors for IgG on enterocyte microvillous membranes of the neonatal rat. Such receptors would be necessary for the specific uptake and transport of these molecules.

Full text

PDF
2924

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BANGHAM D. R., TERRY R. J. The absorption of 131I-labelled homologous and heterologous serum proteins fed orally to young rats. Biochem J. 1957 Aug;66(4):579–583. doi: 10.1042/bj0660579. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. BARTH W. F., WOCHNER R. D., WALDMANN T. A., FAHEY J. L. METABOLISM OF HUMAN GAMMA MACROGLOBULINS. J Clin Invest. 1964 Jun;43:1036–1048. doi: 10.1172/JCI104987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. BRAMBELL F. W., HALLIDAY R., MORRIS I. G. Interference by human and bovine serum and serum protein fractions with the absorption of antibodies by suckling rats and mice. Proc R Soc Lond B Biol Sci. 1958 Jul 1;149(934):1–11. doi: 10.1098/rspb.1958.0046. [DOI] [PubMed] [Google Scholar]
  4. BRAMBELL F. W., HEMMINGS W. A., MORRIS I. G. A THEORETICAL MODEL OF GAMMA-GLOBULIN CATABOLISM. Nature. 1964 Sep 26;203:1352–1354. doi: 10.1038/2031352a0. [DOI] [PubMed] [Google Scholar]
  5. BRAMBELL F. W., HEMMINGS W. A., OAKLEY C. L., PORTER R. R. The relative transmission of the fractions of papain hydrolyzed homologous gamma-globulin from the uterine cavity to the foetal circulation in the rabbit. Proc R Soc Lond B Biol Sci. 1960 Mar 1;151:478–482. doi: 10.1098/rspb.1960.0011. [DOI] [PubMed] [Google Scholar]
  6. BRAMBELL F. W. RESEMBLANCES BETWEEN PASSIVE ANAPHYLACTIC SENSITIZATION AND TRANSMISSION OF PASSIVE IMMUNITY. Nature. 1963 Sep 21;199:1164–1166. doi: 10.1038/1991164a0. [DOI] [PubMed] [Google Scholar]
  7. Brambell F. W. The transmission of immunity from mother to young and the catabolism of immunoglobulins. Lancet. 1966 Nov 19;2(7473):1087–1093. doi: 10.1016/s0140-6736(66)92190-8. [DOI] [PubMed] [Google Scholar]
  8. CLARK S. L., Jr The ingestion of proteins and colloidal materials by columnar absorptive cells of the small intestine in suckling rats and mice. J Biophys Biochem Cytol. 1959 Jan 25;5(1):41–50. doi: 10.1083/jcb.5.1.41. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. FAHEY J. L., ROBINSON A. G. FACTORS CONTROLLING SERUM GAMMA-GLOBULIN CONCENTRATION. J Exp Med. 1963 Nov 1;118:845–868. doi: 10.1084/jem.118.5.845. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Forstner G. G., Sabesin S. M., Isselbacher K. J. Rat intestinal microvillus membranes. Purification and biochemical characterization. Biochem J. 1968 Jan;106(2):381–390. doi: 10.1042/bj1060381. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. GITLIN D., KUMATE J., URRUSTI J., MORALES C. THE SELECTIVITY OF THE HUMAN PLACENTA IN THE TRANSFER OF PLASMA PROTEINS FROM MOTHER TO FETUS. J Clin Invest. 1964 Oct;43:1938–1951. doi: 10.1172/JCI105068. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Gitlin D., Koch C. On the mechanisms of maternofetal transfer of human albumin and gamma-G globulin in the mouse. J Clin Invest. 1968 May;47(5):1204–1209. doi: 10.1172/JCI105809. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. HALLIDAY R. Prenatal and postnatal transmission of passive immunity to young rats. Proc R Soc Lond B Biol Sci. 1955 Nov 29;144(916):427–430. doi: 10.1098/rspb.1955.0068. [DOI] [PubMed] [Google Scholar]
  14. HALLIDAY R. The absorption of antibodies from immune sera by the gut of the young rat. Proc R Soc Lond B Biol Sci. 1955 Mar 15;143(912):408–413. doi: 10.1098/rspb.1955.0020. [DOI] [PubMed] [Google Scholar]
  15. HALLIDAY R. The absorption of antibody from immune sera and from mixtures of sera by the gut of the young rat. Proc R Soc Lond B Biol Sci. 1958 Jan 1;148(930):92–103. doi: 10.1098/rspb.1958.0008. [DOI] [PubMed] [Google Scholar]
  16. HEMMINGS W. A., MORRIS I. G. An attempt to affect the selective absorption of antibodies from the gut in young mice. Proc R Soc Lond B Biol Sci. 1959 Apr 21;150(940):403–409. doi: 10.1098/rspb.1959.0030. [DOI] [PubMed] [Google Scholar]
  17. HEMMINGS W. A. Protein selection in the yolk-sac splanchnopleur of the rabbit: the total uptake estimated as loss from the uterus. Proc R Soc Lond B Biol Sci. 1958 Jan 1;148(930):76–83. doi: 10.1098/rspb.1958.0006. [DOI] [PubMed] [Google Scholar]
  18. Huber H., Fudenberg H. H. Receptor sites of human monocytes for IgG. Int Arch Allergy Appl Immunol. 1968;34(1):18–31. doi: 10.1159/000230091. [DOI] [PubMed] [Google Scholar]
  19. Ishizaka T., Ishizaka K., Salmon S., Fudenberg H. Biologic activities of aggregated gamma-globulin. 8. Aggregated immunoglobulins of different classes. J Immunol. 1967 Jul;99(1):82–91. [PubMed] [Google Scholar]
  20. Jordan S. M., Morgan E. H. The development of selectivity of protein absorption from the intestine during suckling in the rat. Aust J Exp Biol Med Sci. 1968 Aug;46(4):465–472. doi: 10.1038/icb.1968.39. [DOI] [PubMed] [Google Scholar]
  21. KAPLAN K. C., CATSOULIS E. A., FRANKLIN E. C. MATERNAL-FOETAL TRANSFER OF HUMAN IMMUNE GLOBULINS AND FRAGMENTS IN RABBITS. Immunology. 1965 Apr;8:354–359. [PMC free article] [PubMed] [Google Scholar]
  22. Koch C., Boesman M., Gitlin D. Maternofoetal transfer of gamma G immunoglobulins. Nature. 1967 Dec 16;216(5120):1116–1117. doi: 10.1038/2161116a0. [DOI] [PubMed] [Google Scholar]
  23. Kraehenbuhl J. P., Gloor E., Blanc B. Morphologie comparée de la muqueuse intestinale de deux espèces animales aux possibilités d'absorption protéique néonatale différentes. Z Zellforsch Mikrosk Anat. 1966;70(2):209–219. [PubMed] [Google Scholar]
  24. Lecce J. G. In vitro absorption of gamma-globulin by neonatal intestinal epithelium of the pig. J Physiol. 1966 Jun;184(3):594–604. doi: 10.1113/jphysiol.1966.sp007933. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. MORRIS I. G. THE TRANSMISSION OF ANTIBODIES AND NORMAL GAMMA-GLOBULINS ACROSS THE YOUNG MOUSE GUT. Proc R Soc Lond B Biol Sci. 1964 May 19;160:276–292. doi: 10.1098/rspb.1964.0040. [DOI] [PubMed] [Google Scholar]
  26. Morell A., Terry W. D., Waldmann T. A. Metabolic properties of IgG subclasses in man. J Clin Invest. 1970 Apr;49(4):673–680. doi: 10.1172/JCI106279. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Morris I. G. The transmission of anti-Brucella abortus agglutinins across the gut in young rats. Proc R Soc Lond B Biol Sci. 1965 Nov 23;163(992):402–416. doi: 10.1098/rspb.1965.0075. [DOI] [PubMed] [Google Scholar]
  28. Morris I. G. The transmission of bovine anti-Brucella abortus agglutinins across the gut of suckling rats. Immunology. 1967 Jul;13(1):49–61. [PMC free article] [PubMed] [Google Scholar]
  29. Müller-Eberhard H. J. Chemistry and reaction mechanisms of complement. Adv Immunol. 1968;8:1–80. doi: 10.1016/s0065-2776(08)60464-2. [DOI] [PubMed] [Google Scholar]
  30. PORTER R. R. The hydrolysis of rabbit y-globulin and antibodies with crystalline papain. Biochem J. 1959 Sep;73:119–126. doi: 10.1042/bj0730119. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Padykula H. A., Deren J. J., Wilson T. H. Development of structure and function in the mammalian yolk sac. I. Developmental morphology and vitamin B12 uptake of the rat yolk sac. Dev Biol. 1966 Jun;13(3):311–348. doi: 10.1016/0012-1606(66)90053-4. [DOI] [PubMed] [Google Scholar]
  32. Rogentine G. N., Jr, Rowe D. S., Bradley J., Waldmann T. A., Fahey J. L. Metabolism of human immunoglobulin D (IgD). J Clin Invest. 1966 Sep;45(9):1467–1478. doi: 10.1172/JCI105454. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. SELL S. EVIDENCE FOR SPECIES' DIFFERENCES IN THE EFFECT OF SERUM GAMMA-GLOBULIN CONCENTRATION ON GAMMA-GLOBULIN CATABOLISM. J Exp Med. 1964 Nov 1;120:967–986. doi: 10.1084/jem.120.5.967. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Strober W., Wochner R. D., Barlow M. H., McFarlin D. E., Waldmann T. A. Immunoglobulin metabolism in ataxia telangiectasia. J Clin Invest. 1968 Aug;47(8):1905–1915. doi: 10.1172/JCI105881. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Terry W. D. Skin-sensitizing activity related to gamma- polypeptide chain characteristics of human IgG. J Immunol. 1965 Dec;95(6):1041–1047. [PubMed] [Google Scholar]
  36. Tomasi T. B., Jr, Bienenstock J. Secretory immunoglobulins. Adv Immunol. 1968;9:1–96. doi: 10.1016/s0065-2776(08)60441-1. [DOI] [PubMed] [Google Scholar]
  37. Waldmann T. A., Strober W. Metabolism of immunoglobulins. Prog Allergy. 1969;13:1–110. doi: 10.1159/000385919. [DOI] [PubMed] [Google Scholar]
  38. Wochner R. D., Strober W., Waldmann T. A. The role of the kidney in the catabolism of Bence Jones proteins and immunoglobulin fragments. J Exp Med. 1967 Aug 1;126(2):207–221. doi: 10.1084/jem.126.2.207. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES