Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1960 Sep;39(9):1401–1412. doi: 10.1172/JCI104160

VARIATIONS IN THE PULMONARY CAPILLARY BLOOD VOLUME AND MEMBRANE DIFFUSION COMPONENT IN HEALTH AND DISEASE*

D V Bates 1, C J Varvis 1, R E Donevan 1, R V Christie 1
PMCID: PMC293386  PMID: 13797493

Full text

PDF
1409

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. ASMUSSEN E., NIELSEN M. Physiological dead space and alveolar gas pressures at rest and during muscular exercise. Acta Physiol Scand. 1956 Dec 29;38(1):1–21. doi: 10.1111/j.1748-1716.1957.tb00169.x. [DOI] [PubMed] [Google Scholar]
  2. AUCHINCLOSS J. H., Jr, GILBERT R., EICH R. H. The pulmonary diffusing capacity in congenital and rheumatic heart disease. Circulation. 1959 Feb;19(2):232–241. doi: 10.1161/01.cir.19.2.232. [DOI] [PubMed] [Google Scholar]
  3. BATES D. V., MCILROY M. B. Respiratory function after pneumonectomy. Thorax. 1956 Dec;11(4):303–311. [PMC free article] [PubMed] [Google Scholar]
  4. BISHOP J. M., DONALD K. W., WADE O. L. Circulatory dynamics at rest and on exercise in the hyperkinetic states. Clin Sci. 1955 May;14(2):329–360. [PubMed] [Google Scholar]
  5. CARROLL D. G., COHEN G., COHN J. E., JOHNS C. J., RILEY R. L., SHEPARD R. H. The diffusing capacity of the lungs in patients with mitral stenosis studied post-operatively. J Clin Invest. 1956 Sep;35(9):1008–1014. doi: 10.1172/JCI103346. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. COTES J. E. The role of oxygen, carbon dioxide and lactic acid in the ventilatory response to exercise in patients with mitral stenosis. Clin Sci. 1955 May;14(2):317–328. [PubMed] [Google Scholar]
  7. FORSTER R. E. Exchange of gases between alveolar air and pulmonary capillary blood: pulmonary diffusing capacity. Physiol Rev. 1957 Oct;37(4):391–452. doi: 10.1152/physrev.1957.37.4.391. [DOI] [PubMed] [Google Scholar]
  8. FORSTER R. E., ROUGHTON F. J., CANDER L., BRISCOE W. A., KREUZER F. Apparent pulmonary diffusing capacity for CO at varying alveolar O2 tensions. J Appl Physiol. 1957 Sep;11(2):277–289. doi: 10.1152/jappl.1957.11.2.277. [DOI] [PubMed] [Google Scholar]
  9. FORSTER R. E., ROUGHTON F. J., KREUZER F., BRISCOE W. A. Photocolorimetric determination of rate of uptake of CO and O2 by reduced human red cell suspensions at 37 degrees C. J Appl Physiol. 1957 Sep;11(2):260–268. doi: 10.1152/jappl.1957.11.2.260. [DOI] [PubMed] [Google Scholar]
  10. LAWTHER P. J., APTHORP G. H. A method for the determination of carbon monoxide in blood. Br J Ind Med. 1955 Oct;12(4):326–329. doi: 10.1136/oem.12.4.326. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. LEWIS B. M., LIN T. H., NOE F. E., KOMISARUK R. The measurement of pulmonary capillary blood volume and pulmonary membrane diffusing capacity in normal subjects; the effects of exercise and position. J Clin Invest. 1958 Jul;37(7):1061–1070. doi: 10.1172/JCI103687. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. LINDERHOLM H. Diffusing capacity of the lungs as a limiting factor for physical working capacity. Acta Med Scand. 1959 Feb 7;163(1):61–84. doi: 10.1111/j.0954-6820.1959.tb10383.x. [DOI] [PubMed] [Google Scholar]
  13. LINDERHOLM H. On the significance of CO tension in pulmonary capillary blood for determination of pulmonary diffusing capacity with the steady state CO method. Acta Med Scand. 1957 Feb 2;156(6):413–427. doi: 10.1111/j.0954-6820.1957.tb00098.x. [DOI] [PubMed] [Google Scholar]
  14. MACINTOSH D. J., SINNOTT J. C., MILNE I. G., REID E. A. Some aspects of disordered pulmonary function in mitral stenosis. Ann Intern Med. 1958 Dec;49(6):1294–1304. doi: 10.7326/0003-4819-49-6-1294. [DOI] [PubMed] [Google Scholar]
  15. MARSHALL R., SMELLIE H., BAYLIS J. H., HOYLE C., BATES D. V. Pulmonary function in sarcoidosis. Thorax. 1958 Mar;13(1):48–58. doi: 10.1136/thx.13.1.48. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. McNEILL R. S., RANKIN J., FORSTER R. F. The diffusing capacity of the pulmonary membrane and the pulmonary capillary blood volume in cardiopulmonary disease. Clin Sci. 1958 Aug;17(3):465–482. [PubMed] [Google Scholar]
  17. RILEY R. L., RILEY M. C., HILL H. M. Diffuse pulmonary sarcoidosis: diffusing capacity during exercise and other lung function studies in relation to ACTH therapy. Bull Johns Hopkins Hosp. 1952 Nov;91(5):345–370. [PubMed] [Google Scholar]
  18. ROSS J. C., FRAYSER R., HICKAM J. B. A study of the mechanism by which exercise increases the pulmonary diffusing capacity for carbon monoxide. J Clin Invest. 1959 Jun;38(6):916–932. doi: 10.1172/JCI103874. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. ROUGHTON F. J., FORSTER R. E., CANDER L. Rate at which carbon monoxide replaces oxygen from combination with human hemoglobin in solution and in the red cell. J Appl Physiol. 1957 Sep;11(2):269–276. doi: 10.1152/jappl.1957.11.2.269. [DOI] [PubMed] [Google Scholar]
  20. ROUGHTON F. J., FORSTER R. E. Relative importance of diffusion and chemical reaction rates in determining rate of exchange of gases in the human lung, with special reference to true diffusing capacity of pulmonary membrane and volume of blood in the lung capillaries. J Appl Physiol. 1957 Sep;11(2):290–302. doi: 10.1152/jappl.1957.11.2.290. [DOI] [PubMed] [Google Scholar]
  21. TURINO G. M., BRANDFONBRENER M., FISHMAN A. P. The effect of changes in ventilation and pulmonary blood flow on the diffusing capacity of the lung. J Clin Invest. 1959 Jul;38(7):1186–1201. doi: 10.1172/JCI103894. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES