Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1980 Feb;141(2):876–887. doi: 10.1128/jb.141.2.876-887.1980

Sites of metal deposition in the cell wall of Bacillus subtilis.

T J Beveridge, R G Murray
PMCID: PMC293699  PMID: 6767692

Abstract

Amine and carboxyl groups of the cell wall of Bacillus subtilis were chemically modified individually to neutralize their electrochemical charge for determination of their contribution to the metal uptake process. Mild alkali treatment removed ca. 94% of the constituent teichoic acid (expressed as inorganic phosphorus) and allowed estimation of metal interaction with phosphodiester bonds. Chemical modifications of amine functions did not reduce the metal uptake values as compared to native walls, whereas extraction of teichoic acid caused a stoichiometric reduction in levels. In contrast, alteration of carboxyl groups severely limited metal deposition of most of the metals tested. X-ray diffraction and electron microscopy suggested, in this case, that the form and structure of the metal deposit could be different from that found in native walls. The observations suggest that carboxyl groups provide the major site of metal deposition in the B. subtilis wall.

Full text

PDF
881

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Beveridge T. J., Murray R. G. Uptake and retention of metals by cell walls of Bacillus subtilis. J Bacteriol. 1976 Sep;127(3):1502–1518. doi: 10.1128/jb.127.3.1502-1518.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Beveridge T. J. The response of cell walls of Bacillus subtilis to metals and to electron-microscopic stains. Can J Microbiol. 1978 Feb;24(2):89–104. doi: 10.1139/m78-018. [DOI] [PubMed] [Google Scholar]
  3. Beveridge T. J., Williams F. M., Koval J. J. The effect of chemical fixatives on cell walls of Bacillus subtilis. Can J Microbiol. 1978 Dec;24(12):1439–1451. doi: 10.1139/m78-233. [DOI] [PubMed] [Google Scholar]
  4. Birdsell D. C., Doyle R. J., Morgenstern M. Organization of teichoic acid in the cell wall of Bacillus subtilis. J Bacteriol. 1975 Feb;121(2):726–734. doi: 10.1128/jb.121.2.726-734.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Chin T., Burger M. M., Glaser L. Synthesis of teichoic acids. VI. The formation of multiple wall polymers in Bacillus subtilis W-23. Arch Biochem Biophys. 1966 Sep 26;116(1):358–367. doi: 10.1016/0003-9861(66)90042-7. [DOI] [PubMed] [Google Scholar]
  6. Cutinelli C., Galdiero F. Capacità legante ioni del cell-wall di Staphylococcus aureus. Riv Biol. 1967 Apr-Jun;60(2):285–305. [PubMed] [Google Scholar]
  7. DRYER R. L., TAMMES A. R., ROUTH J. I. The determination of phosphorus and phosphatase with N-phenyl-p-phenylenediamine. J Biol Chem. 1957 Mar;225(1):177–183. [PubMed] [Google Scholar]
  8. Doyle R. J., McDannel M. L., Streips U. N., Birdsell D. C., Young F. E. Polyelectrolyte nature of bacterial teichoic acids. J Bacteriol. 1974 May;118(2):606–615. doi: 10.1128/jb.118.2.606-615.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Doyle R. J., Streips U. N., Fan V. S., Brown W. C., Mobley H., Mansfield J. M. Cell wall protein in Bacillus subtilis. J Bacteriol. 1977 Jan;129(1):547–549. doi: 10.1128/jb.129.1.547-549.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Eyl A., Inagami T. Modification of carboxyl groups in the active site of trypsin. Biochem Biophys Res Commun. 1970 Jan 6;38(1):149–155. doi: 10.1016/0006-291x(70)91097-1. [DOI] [PubMed] [Google Scholar]
  11. Formanek H. A three dimensional model of the digestion of peptidoglycan by lysozyme. Biophys Struct Mech. 1977 Dec 27;4(1):1–14. doi: 10.1007/BF00538836. [DOI] [PubMed] [Google Scholar]
  12. Formanek H., Formanek S. Specific staining for electron microscopy of murein sacculi of bacterial cell walls. Eur J Biochem. 1970 Nov;17(1):78–84. doi: 10.1111/j.1432-1033.1970.tb01137.x. [DOI] [PubMed] [Google Scholar]
  13. Formanek H., Formanek S., Wawra H. A three-dimensional atomic model of the murein layer of bacteria. Eur J Biochem. 1974 Jul 15;46(2):279–294. doi: 10.1111/j.1432-1033.1974.tb03620.x. [DOI] [PubMed] [Google Scholar]
  14. Formanek H., Schleifer K. H., Seidl H. P., Lindemann R., Zundel G. Three-dimensional structure of peptidoglycan of bacterial cell walls: infra red investigations. FEBS Lett. 1976 Nov;70(1):150–154. doi: 10.1016/0014-5793(76)80746-6. [DOI] [PubMed] [Google Scholar]
  15. Galdiero F., Lembo M., Tufano M. A. Affinity of various cations for Staphylococcus aureus cell-wall. Experientia. 1968 Jan 15;24(1):34–36. doi: 10.1007/BF02136776. [DOI] [PubMed] [Google Scholar]
  16. HOROWITZ M. G., KLOTZ I. M. Interactions of an azomercurial with proteins. Arch Biochem Biophys. 1956 Jul;63(1):77–86. doi: 10.1016/0003-9861(56)90011-x. [DOI] [PubMed] [Google Scholar]
  17. Heptinstall S., Archibald A. R., Baddiley J. Teichoic acids and membrane function in bacteria. Nature. 1970 Feb 7;225(5232):519–521. doi: 10.1038/225519a0. [DOI] [PubMed] [Google Scholar]
  18. Hughes R. C. Autolysis of isolated cell walls of Bacillus licheniformis N.C.T.C. 6346 and Bacillus subtilis Marburg Strain 168. Separation of the products and characterization of the mucopeptide fragments. Biochem J. 1970 Oct;119(5):849–860. doi: 10.1042/bj1190849. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Hughes R. C., Tanner P. J. The action of dilute alkali on some bacterial cell walls. Biochem Biophys Res Commun. 1968 Oct 10;33(1):22–28. doi: 10.1016/0006-291x(68)90248-9. [DOI] [PubMed] [Google Scholar]
  20. KORMAN S., CLARKE H. T. Carboxymethyl proteins. J Biol Chem. 1956 Jul;221(1):133–141. [PubMed] [Google Scholar]
  21. Lambert P. A., Hancock I. C., Baddiley J. The interaction of magnesium ions with teichoic acid. Biochem J. 1975 Sep;149(3):519–524. doi: 10.1042/bj1490519. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Lapidot A., Irving C. S. Comparative in vivo nitrogen-15 nuclear magnetic resonance study of the cell wall components of five Gram-positive bacteria. Biochemistry. 1979 Feb 20;18(4):704–714. doi: 10.1021/bi00571a024. [DOI] [PubMed] [Google Scholar]
  23. Marquis R. E., Mayzel K., Carstensen E. L. Cation exchange in cell walls of gram-positive bacteria. Can J Microbiol. 1976 Jul;22(7):975–982. doi: 10.1139/m76-142. [DOI] [PubMed] [Google Scholar]
  24. Mauck J., Glaser L. On the mode of in vivo assembly of the cell wall of Bacillus subtilis. J Biol Chem. 1972 Feb 25;247(4):1180–1187. [PubMed] [Google Scholar]
  25. Ou L. T., Marquis R. E. Electromechanical interactions in cell walls of gram-positive cocci. J Bacteriol. 1970 Jan;101(1):92–101. doi: 10.1128/jb.101.1.92-101.1970. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Shibaev V. N., Duckworth M., Archibald A. R., Baddiley J. The structure of a polymer containing galactosamine from walls of Bacillus subtilis 168. Biochem J. 1973 Oct;135(2):383–384. doi: 10.1042/bj1350383. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Tempest D. W. Proceedings: Netherllands Society for Microbiology meeting at Utrecht on 2 May 1973. Environmental effects on bacterial wall synthesis. Antonie Van Leeuwenhoek. 1973 Nov;39(4):652–653. doi: 10.1007/BF02578910. [DOI] [PubMed] [Google Scholar]
  28. Verwer R. W., Nanninga N. Electron microscopy of isolated cell walls of Bacillus subtilis var. niger. Arch Microbiol. 1976 Aug;109(1-2):195–197. doi: 10.1007/BF00425135. [DOI] [PubMed] [Google Scholar]
  29. Warth A. D., Strominger J. L. Structure of the peptidoglycan from vegetative cell walls of Bacillus subtilis. Biochemistry. 1971 Nov 23;10(24):4349–4358. doi: 10.1021/bi00800a001. [DOI] [PubMed] [Google Scholar]
  30. Wyke A. W., Ward J. B. Biosynthesis of wall polymers in Bacillus subtilis. J Bacteriol. 1977 Jun;130(3):1055–1063. doi: 10.1128/jb.130.3.1055-1063.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES