Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1994 Feb;93(2):652–661. doi: 10.1172/JCI117017

Increased gene expression after liposome-mediated arterial gene transfer associated with intimal smooth muscle cell proliferation. In vitro and in vivo findings in a rabbit model of vascular injury.

S Takeshita 1, D Gal 1, G Leclerc 1, J G Pickering 1, R Riessen 1, L Weir 1, J M Isner 1
PMCID: PMC293891  PMID: 8113401

Abstract

Arterial gene transfer represents a novel strategy that is potentially applicable to a variety of cardiovascular disorders. Attempts to perform arterial gene transfer using nonviral vectors have been compromised by a low transfection efficiency. We investigated the hypothesis that cellular proliferation induced by arterial injury could augment gene expression after liposome-mediated gene transfer. Nondenuded and denuded rabbit arterial strips were maintained in culture for up to 21 d, after which transfection was performed with a mixture of the plasmid encoding firefly luciferase and cationic liposomes. In non-denuded arteries, the culture interval before transfection did not affect the gene expression. In contrast, denuded arteries cultured for 3-14 d before transfection yielded 7-13-fold higher expression (vs. day 0; P < 0.005). Transfection was then performed percutaneously to the iliac arteries of live rabbits with or without antecedent angioplasty. Gene expression increased when transfection was performed 3-7 d postangioplasty (P < 0.05). Proliferative activity of neointimal cells assessed in vitro by [3H]thymidine incorporation, and in vivo by immunostaining for proliferating cell nuclear antigen, increased and declined in parallel with gene expression. These findings thus indicate that the expression of liposome-mediated arterial gene transfer may be augmented in presence of ongoing cellular proliferation.

Full text

PDF
655

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BAUMGARTNER H. R., STUDER A. [Controlled over-dilatation of the abdominal aorta in normo- and hypercholesteremic rabbits]. Pathol Microbiol (Basel) 1963;26:129–148. [PubMed] [Google Scholar]
  2. Bonnerot C., Rocancourt D., Briand P., Grimber G., Nicolas J. F. A beta-galactosidase hybrid protein targeted to nuclei as a marker for developmental studies. Proc Natl Acad Sci U S A. 1987 Oct;84(19):6795–6799. doi: 10.1073/pnas.84.19.6795. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Brasier A. R., Tate J. E., Habener J. F. Optimized use of the firefly luciferase assay as a reporter gene in mammalian cell lines. Biotechniques. 1989 Nov-Dec;7(10):1116–1122. [PubMed] [Google Scholar]
  4. Brown L. F., Yeo K. T., Berse B., Yeo T. K., Senger D. R., Dvorak H. F., van de Water L. Expression of vascular permeability factor (vascular endothelial growth factor) by epidermal keratinocytes during wound healing. J Exp Med. 1992 Nov 1;176(5):1375–1379. doi: 10.1084/jem.176.5.1375. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Chapman G. D., Lim C. S., Gammon R. S., Culp S. C., Desper J. S., Bauman R. P., Swain J. L., Stack R. S. Gene transfer into coronary arteries of intact animals with a percutaneous balloon catheter. Circ Res. 1992 Jul;71(1):27–33. doi: 10.1161/01.res.71.1.27. [DOI] [PubMed] [Google Scholar]
  6. Dingwall C., Laskey R. The nuclear membrane. Science. 1992 Nov 6;258(5084):942–947. doi: 10.1126/science.1439805. [DOI] [PubMed] [Google Scholar]
  7. Felgner P. L., Gadek T. R., Holm M., Roman R., Chan H. W., Wenz M., Northrop J. P., Ringold G. M., Danielsen M. Lipofection: a highly efficient, lipid-mediated DNA-transfection procedure. Proc Natl Acad Sci U S A. 1987 Nov;84(21):7413–7417. doi: 10.1073/pnas.84.21.7413. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Felgner P. L. Genes in a bottle. Lab Invest. 1993 Jan;68(1):1–3. [PubMed] [Google Scholar]
  9. Flugelman M. Y., Jaklitsch M. T., Newman K. D., Casscells W., Bratthauer G. L., Dichek D. A. Low level in vivo gene transfer into the arterial wall through a perforated balloon catheter. Circulation. 1992 Mar;85(3):1110–1117. doi: 10.1161/01.cir.85.3.1110. [DOI] [PubMed] [Google Scholar]
  10. Gal D., Weir L., Leclerc G., Pickering J. G., Hogan J., Isner J. M. Direct myocardial transfection in two animal models. Evaluation of parameters affecting gene expression and percutaneous gene delivery. Lab Invest. 1993 Jan;68(1):18–25. [PubMed] [Google Scholar]
  11. Gordon D., Reidy M. A., Benditt E. P., Schwartz S. M. Cell proliferation in human coronary arteries. Proc Natl Acad Sci U S A. 1990 Jun;87(12):4600–4604. doi: 10.1073/pnas.87.12.4600. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Gorman C. M., Merlino G. T., Willingham M. C., Pastan I., Howard B. H. The Rous sarcoma virus long terminal repeat is a strong promoter when introduced into a variety of eukaryotic cells by DNA-mediated transfection. Proc Natl Acad Sci U S A. 1982 Nov;79(22):6777–6781. doi: 10.1073/pnas.79.22.6777. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Gotlieb A. I., Boden P. Porcine aortic organ culture: a model to study the cellular response to vascular injury. In Vitro. 1984 Jul;20(7):535–542. doi: 10.1007/BF02639769. [DOI] [PubMed] [Google Scholar]
  14. Hoefler H., Childers H., Montminy M. R., Lechan R. M., Goodman R. H., Wolfe H. J. In situ hybridization methods for the detection of somatostatin mRNA in tissue sections using antisense RNA probes. Histochem J. 1986 Nov-Dec;18(11-12):597–604. doi: 10.1007/BF01675295. [DOI] [PubMed] [Google Scholar]
  15. Lawrence J. B., Singer R. H. Intracellular localization of messenger RNAs for cytoskeletal proteins. Cell. 1986 May 9;45(3):407–415. doi: 10.1016/0092-8674(86)90326-0. [DOI] [PubMed] [Google Scholar]
  16. Leclerc G., Gal D., Takeshita S., Nikol S., Weir L., Isner J. M. Percutaneous arterial gene transfer in a rabbit model. Efficiency in normal and balloon-dilated atherosclerotic arteries. J Clin Invest. 1992 Sep;90(3):936–944. doi: 10.1172/JCI115970. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Lemarchand P., Jones M., Yamada I., Crystal R. G. In vivo gene transfer and expression in normal uninjured blood vessels using replication-deficient recombinant adenovirus vectors. Circ Res. 1993 May;72(5):1132–1138. doi: 10.1161/01.res.72.5.1132. [DOI] [PubMed] [Google Scholar]
  18. Lim C. S., Chapman G. D., Gammon R. S., Muhlestein J. B., Bauman R. P., Stack R. S., Swain J. L. Direct in vivo gene transfer into the coronary and peripheral vasculatures of the intact dog. Circulation. 1991 Jun;83(6):2007–2011. doi: 10.1161/01.cir.83.6.2007. [DOI] [PubMed] [Google Scholar]
  19. Meidell R. S., Gerard R. D., Williams R. S. The end of the beginning. Gene transfer into the vessel wall. Circulation. 1992 Mar;85(3):1219–1219. doi: 10.1161/01.cir.85.3.1219. [DOI] [PubMed] [Google Scholar]
  20. Miller D. G., Adam M. A., Miller A. D. Gene transfer by retrovirus vectors occurs only in cells that are actively replicating at the time of infection. Mol Cell Biol. 1990 Aug;10(8):4239–4242. doi: 10.1128/mcb.10.8.4239. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Mulligan R. C. The basic science of gene therapy. Science. 1993 May 14;260(5110):926–932. doi: 10.1126/science.8493530. [DOI] [PubMed] [Google Scholar]
  22. Nabel E. G., Plautz G., Nabel G. J. Site-specific gene expression in vivo by direct gene transfer into the arterial wall. Science. 1990 Sep 14;249(4974):1285–1288. doi: 10.1126/science.2119055. [DOI] [PubMed] [Google Scholar]
  23. Nabel E. G., Plautz G., Nabel G. J. Transduction of a foreign histocompatibility gene into the arterial wall induces vasculitis. Proc Natl Acad Sci U S A. 1992 Jun 1;89(11):5157–5161. doi: 10.1073/pnas.89.11.5157. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Nabel E. G., Yang Z. Y., Plautz G., Forough R., Zhan X., Haudenschild C. C., Maciag T., Nabel G. J. Recombinant fibroblast growth factor-1 promotes intimal hyperplasia and angiogenesis in arteries in vivo. Nature. 1993 Apr 29;362(6423):844–846. doi: 10.1038/362844a0. [DOI] [PubMed] [Google Scholar]
  25. Nabel E. G., Yang Z., Liptay S., San H., Gordon D., Haudenschild C. C., Nabel G. J. Recombinant platelet-derived growth factor B gene expression in porcine arteries induce intimal hyperplasia in vivo. J Clin Invest. 1993 Apr;91(4):1822–1829. doi: 10.1172/JCI116394. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Nelken N. A., Soifer S. J., O'Keefe J., Vu T. K., Charo I. F., Coughlin S. R. Thrombin receptor expression in normal and atherosclerotic human arteries. J Clin Invest. 1992 Oct;90(4):1614–1621. doi: 10.1172/JCI116031. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Nicolau C., Sene C. Liposome-mediated DNA transfer in eukaryotic cells. Dependence of the transfer efficiency upon the type of liposomes used and the host cell cycle stage. Biochim Biophys Acta. 1982 Oct 11;721(2):185–190. doi: 10.1016/0167-4889(82)90067-2. [DOI] [PubMed] [Google Scholar]
  28. Nikol S., Isner J. M., Pickering J. G., Kearney M., Leclerc G., Weir L. Expression of transforming growth factor-beta 1 is increased in human vascular restenosis lesions. J Clin Invest. 1992 Oct;90(4):1582–1592. doi: 10.1172/JCI116027. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Pickering J. G., Weir L., Jekanowski J., Kearney M. A., Isner J. M. Proliferative activity in peripheral and coronary atherosclerotic plaque among patients undergoing percutaneous revascularization. J Clin Invest. 1993 Apr;91(4):1469–1480. doi: 10.1172/JCI116352. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Riessen R., Rahimizadeh H., Blessing E., Takeshita S., Barry J. J., Isner J. M. Arterial gene transfer using pure DNA applied directly to a hydrogel-coated angioplasty balloon. Hum Gene Ther. 1993 Dec;4(6):749–758. doi: 10.1089/hum.1993.4.6-749. [DOI] [PubMed] [Google Scholar]
  31. Sanes J. R., Rubenstein J. L., Nicolas J. F. Use of a recombinant retrovirus to study post-implantation cell lineage in mouse embryos. EMBO J. 1986 Dec 1;5(12):3133–3142. doi: 10.1002/j.1460-2075.1986.tb04620.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Selden R. F., Howie K. B., Rowe M. E., Goodman H. M., Moore D. D. Human growth hormone as a reporter gene in regulation studies employing transient gene expression. Mol Cell Biol. 1986 Sep;6(9):3173–3179. doi: 10.1128/mcb.6.9.3173. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Strain A. J., Wallace W. A., Wyllie A. H. Enhancement of DNA-mediated gene transfer by high-Mr carrier DNA in synchronized CV-1 cells. Biochem J. 1985 Jan 15;225(2):529–533. doi: 10.1042/bj2250529. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Swain J. L. Gene therapy. A new approach to the treatment of cardiovascular disease. Circulation. 1989 Nov;80(5):1495–1496. doi: 10.1161/01.cir.80.5.1495. [DOI] [PubMed] [Google Scholar]
  35. Wilson J. M., Grossman M., Cabrera J. A., Wu C. H., Wu G. Y. A novel mechanism for achieving transgene persistence in vivo after somatic gene transfer into hepatocytes. J Biol Chem. 1992 Jun 5;267(16):11483–11489. [PubMed] [Google Scholar]
  36. Wolff J. A., Williams P., Acsadi G., Jiao S., Jani A., Chong W. Conditions affecting direct gene transfer into rodent muscle in vivo. Biotechniques. 1991 Oct;11(4):474–485. [PubMed] [Google Scholar]
  37. Wu C. H., Wilson J. M., Wu G. Y. Targeting genes: delivery and persistent expression of a foreign gene driven by mammalian regulatory elements in vivo. J Biol Chem. 1989 Oct 15;264(29):16985–16987. [PubMed] [Google Scholar]
  38. de Wet J. R., Wood K. V., DeLuca M., Helinski D. R., Subramani S. Firefly luciferase gene: structure and expression in mammalian cells. Mol Cell Biol. 1987 Feb;7(2):725–737. doi: 10.1128/mcb.7.2.725. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES