Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1994 Jun;93(6):2572–2577. doi: 10.1172/JCI117268

Endothelin's biphasic effect on fluid absorption in the proximal straight tubule and its inhibitory cascade.

N H Garcia 1, J L Garvin 1
PMCID: PMC294486  PMID: 8200994

Abstract

The effect of endothelin-1 (ET-1) on the proximal tubule remains unclear. This may be due to a biphasic effect on transport in this segment. We hypothesized that ET-1 has a biphasic effect on fluid absorption (Jv) in the proximal straight tubule and that its inhibitory effect is superimposed on its stimulatory effect. ET-1 (10(-13) M) stimulated Jv from 0.68 +/- 0.07 to 1.11 +/- 0.20 nl/mm/min, a 60% increase (P < 0.04). 10(-12) and 10(-10) M ET-1 had no significant effect. 10(-9) M ET-1 reduced Jv from 0.81 +/- 0.19 to 0.44 +/- 0.15 nl/mm/min (P < 0.009). Staurosporine (STP, 10(-8) M) prevented both 10(-9) and 10(-13) M ET-1 from altering Jv significantly indicating that protein kinase C (PKC) is involved. Indomethacin (10(-5) M) blocked the inhibition produced by 10(-9) M ET-1. ETI (10(-6) M), a lipoxygenase inhibitor, also blocked ET-1 inhibition of Jv. Interestingly ET-1 (10(-9) M) stimulated Jv in the presence of both indomethacin and ETI. When 10(-9) M ET-1 was added in the presence of 10(-5) M quinacrine, a phospholipase (PL) inhibitor, Jv also increased from 1.02 +/- 0.20 to 1.23 +/- 0.22 nl/mm/min (P < 0.03). STP blocked this increase. We conclude that (a) 10(-13) M ET-1 stimulates fluid absorption by activating PKC; (b) 10(-9) M ET-1 decreases Jv by PKC-, PL-, cyclooxygenase-, and lipoxygenase-dependent mechanisms; and (c) the inhibitory effect of ET-1 on Jv is superimposed on the stimulatory effect.

Full text

PDF
2575

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Borgese F., Sardet C., Cappadoro M., Pouyssegur J., Motais R. Cloning and expression of a cAMP-activated Na+/H+ exchanger: evidence that the cytoplasmic domain mediates hormonal regulation. Proc Natl Acad Sci U S A. 1992 Aug 1;89(15):6765–6769. doi: 10.1073/pnas.89.15.6765. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Burg M., Grantham J., Abramow M., Orloff J. Preparation and study of fragments of single rabbit nephrons. Am J Physiol. 1966 Jun;210(6):1293–1298. doi: 10.1152/ajplegacy.1966.210.6.1293. [DOI] [PubMed] [Google Scholar]
  3. Danthuluri N. R., Brock T. A. Endothelin receptor-coupling mechanisms in vascular smooth muscle: a role for protein kinase C. J Pharmacol Exp Ther. 1990 Aug;254(2):393–399. [PubMed] [Google Scholar]
  4. Dixon B. S., Breckon R., Fortune J., Sutherland E., Simon F. R., Anderson R. J. Bradykinin activates protein kinase C in cultured cortical collecting tubular cells. Am J Physiol. 1989 Nov;257(5 Pt 2):F808–F817. doi: 10.1152/ajprenal.1989.257.5.F808. [DOI] [PubMed] [Google Scholar]
  5. Dymshitz J., Laudon M., Ben-Jonathan N. Endothelin-induced biphasic response of lactotrophs cultured under different conditions. Neuroendocrinology. 1992 Jun;55(6):724–729. doi: 10.1159/000126192. [DOI] [PubMed] [Google Scholar]
  6. Eiam-Ong S., Hilden S. A., King A. J., Johns C. A., Madias N. E. Endothelin-1 stimulates the Na+/H+ and Na+/HCO3- transporters in rabbit renal cortex. Kidney Int. 1992 Jul;42(1):18–24. doi: 10.1038/ki.1992.255. [DOI] [PubMed] [Google Scholar]
  7. Garvin J. L., Burg M. B., Knepper M. A. Ammonium replaces potassium in supporting sodium transport by the Na-K-ATPase of renal proximal straight tubules. Am J Physiol. 1985 Nov;249(5 Pt 2):F785–F788. doi: 10.1152/ajprenal.1985.249.5.F785. [DOI] [PubMed] [Google Scholar]
  8. Garvin J., Sanders K. Endothelin inhibits fluid and bicarbonate transport in part by reducing Na+/K+ ATPase activity in the rat proximal straight tubule. J Am Soc Nephrol. 1991 Nov;2(5):976–982. doi: 10.1681/ASN.V25976. [DOI] [PubMed] [Google Scholar]
  9. Harris P. J., Zhuo J., Mendelsohn F. A., Skinner S. L. Haemodynamic and renal tubular effects of low doses of endothelin in anaesthetized rats. J Physiol. 1991 Feb;433:25–39. doi: 10.1113/jphysiol.1991.sp018412. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Horie S., Moe O., Yamaji Y., Cano A., Miller R. T., Alpern R. J. Role of protein kinase C and transcription factor AP-1 in the acid-induced increase in Na/H antiporter activity. Proc Natl Acad Sci U S A. 1992 Jun 15;89(12):5236–5240. doi: 10.1073/pnas.89.12.5236. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Hébert R. L., Jacobson H. R., Breyer M. D. Prostaglandin E2 inhibits sodium transport in rabbit cortical collecting duct by increasing intracellular calcium. J Clin Invest. 1991 Jun;87(6):1992–1998. doi: 10.1172/JCI115227. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Jones T. R., Zamboni R., Belley M., Champion E., Charette L., Ford-Hutchinson A. W., Frenette R., Gauthier J. Y., Leger S., Masson P. Pharmacology of L-660,711 (MK-571): a novel potent and selective leukotriene D4 receptor antagonist. Can J Physiol Pharmacol. 1989 Jan;67(1):17–28. doi: 10.1139/y89-004. [DOI] [PubMed] [Google Scholar]
  13. Kinoshita Y., Romero J. C., Knox F. G. Effect of renal interstitial infusion of arachidonic acid on proximal sodium reabsorption. Am J Physiol. 1989 Aug;257(2 Pt 2):F237–F242. doi: 10.1152/ajprenal.1989.257.2.F237. [DOI] [PubMed] [Google Scholar]
  14. Little P. J., Neylon C. B., Tkachuk V. A., Bobik A. Endothelin-1 and endothelin-3 stimulate calcium mobilization by different mechanisms in vascular smooth muscle. Biochem Biophys Res Commun. 1992 Mar 16;183(2):694–700. doi: 10.1016/0006-291x(92)90538-v. [DOI] [PubMed] [Google Scholar]
  15. Liu F. Y., Cogan M. G. Role of protein kinase C in proximal bicarbonate absorption and angiotensin signaling. Am J Physiol. 1990 Apr;258(4 Pt 2):F927–F933. doi: 10.1152/ajprenal.1990.258.4.F927. [DOI] [PubMed] [Google Scholar]
  16. Liu Y., Geisbuhler B., Jones A. W. Activation of multiple mechanisms including phospholipase D by endothelin-1 in rat aorta. Am J Physiol. 1992 Apr;262(4 Pt 1):C941–C949. doi: 10.1152/ajpcell.1992.262.4.C941. [DOI] [PubMed] [Google Scholar]
  17. Miller W. L., Redfield M. M., Burnett J. C., Jr Integrated cardiac, renal, and endocrine actions of endothelin. J Clin Invest. 1989 Jan;83(1):317–320. doi: 10.1172/JCI113876. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Olsen M. E., Hall J. E., Montani J. P., Guyton A. C., Langford H. G., Cornell J. E. Mechanisms of angiotensin II natriuresis and antinatriuresis. Am J Physiol. 1985 Aug;249(2 Pt 2):F299–F307. doi: 10.1152/ajprenal.1985.249.2.F299. [DOI] [PubMed] [Google Scholar]
  19. Perico N., Cornejo R. P., Benigni A., Malanchini B., Ladny J. R., Remuzzi G. Endothelin induces diuresis and natriuresis in the rat by acting on proximal tubular cells through a mechanism mediated by lipoxygenase products. J Am Soc Nephrol. 1991 Jul;2(1):57–69. doi: 10.1681/ASN.V2157. [DOI] [PubMed] [Google Scholar]
  20. Romero M. F., Hopfer U., Madhun Z. T., Zhou W., Douglas J. G. Angiotensin II actions in the rabbit proximal tubule. Angiotensin II mediated signaling mechanisms and electrolyte transport in the rabbit proximal tubule. Ren Physiol Biochem. 1991 Jul-Oct;14(4-5):199–207. doi: 10.1159/000173405. [DOI] [PubMed] [Google Scholar]
  21. Simonson M. S., Wann S., Mené P., Dubyak G. R., Kester M., Nakazato Y., Sedor J. R., Dunn M. J. Endothelin stimulates phospholipase C, Na+/H+ exchange, c-fos expression, and mitogenesis in rat mesangial cells. J Clin Invest. 1989 Feb;83(2):708–712. doi: 10.1172/JCI113935. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Sokolovsky M. Endothelins and sarafotoxins: physiological regulation, receptor subtypes and transmembrane signaling. Pharmacol Ther. 1992;54(2):129–149. doi: 10.1016/0163-7258(92)90030-4. [DOI] [PubMed] [Google Scholar]
  23. Stier C. T., Jr, Quilley C. P., McGiff J. C. Endothelin-3 effects on renal function and prostanoid release in the rat isolated kidney. J Pharmacol Exp Ther. 1992 Jul;262(1):252–256. [PubMed] [Google Scholar]
  24. Takemoto F., Uchida S., Ogata E., Kurokawa K. Endothelin-1 and endothelin-3 binding to rat nephrons. Am J Physiol. 1993 May;264(5 Pt 2):F827–F832. doi: 10.1152/ajprenal.1993.264.5.F827. [DOI] [PubMed] [Google Scholar]
  25. Terada Y., Tomita K., Nonoguchi H., Marumo F. Different localization of two types of endothelin receptor mRNA in microdissected rat nephron segments using reverse transcription and polymerase chain reaction assay. J Clin Invest. 1992 Jul;90(1):107–112. doi: 10.1172/JCI115822. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Wijkander J., Sundler R. Regulation of arachidonate-mobilizing phospholipase A2 by phosphorylation via protein kinase C in macrophages. FEBS Lett. 1992 Oct 26;311(3):299–301. doi: 10.1016/0014-5793(92)81124-5. [DOI] [PubMed] [Google Scholar]
  27. Yamaguchi T., Fukase M., Arao M., Sugimoto T., Chihara K. Endothelin 1 hydrolysis by rat kidney membranes. FEBS Lett. 1992 Sep 14;309(3):303–306. doi: 10.1016/0014-5793(92)80794-h. [DOI] [PubMed] [Google Scholar]
  28. Yanagisawa M., Kurihara H., Kimura S., Tomobe Y., Kobayashi M., Mitsui Y., Yazaki Y., Goto K., Masaki T. A novel potent vasoconstrictor peptide produced by vascular endothelial cells. Nature. 1988 Mar 31;332(6163):411–415. doi: 10.1038/332411a0. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES