Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1980 Sep;143(3):1253–1259. doi: 10.1128/jb.143.3.1253-1259.1980

Active transport and accumulation of bicarbonate by a unicellular cyanobacterium.

A G Miller, B Colman
PMCID: PMC294489  PMID: 6773925

Abstract

The rates of inorganic carbon accumulation and carbon fixation in light by the unicellular cyanobacterim Coccohloris peniocystis have been determined. Cells incubated in the light in medium containing H14CO3- were rapidly separated from the medium by centrifugation through silicone oil into a strongly basic terminating solution. Samples of these inactivated cells were assayed to determine total 14C accumulation, and acid-treated samples were assayed to determine 14C fixation. The rate of transport of inorganic into illuminated cells was faster than the rate of CO2 production in the medium from HCO3- dehydration. This evidence for HCO3- transport in these cells is in agreement with our previous results based upon measurements of photosynthetic O2 evolution. A substantial pool of inorganic carbon was bulit up within the cells presumably as HCO3- before the onset of the maximum rate of photosynthesis. Large accumulation ratios were observed, greater than 1,000 times the external HCO3- concentration. Accumulation did not occur in the dark and was greatly suppressed by the photosynthesis inhibitors 3-(3,4-dichlorophenyl)-1,1-dimethyl urea and 3-chloro-carbonylcyanide phenylhydrazone. These results indicate that the accumulation of inorganic carbon in these cells involves a light-dependent active transport process.

Full text

PDF
1258

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Birmingham B. C., Colman B. Measurement of carbon dioxide compensation points of freshwater algae. Plant Physiol. 1979 Nov;64(5):892–895. doi: 10.1104/pp.64.5.892. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Coleman J. R., Colman B. Effect of oxygen and temperature on the efficiency of photosynthetic carbon assimilation in two microscopic algae. Plant Physiol. 1980 May;65(5):980–983. doi: 10.1104/pp.65.5.980. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Gaensslen R. E., McCarty R. E. Determination of solute accumulation in chloroplasts by rapid centrifugal transfer through silicone fluid layers. Anal Biochem. 1972 Aug;48(2):504–514. doi: 10.1016/0003-2697(72)90105-4. [DOI] [PubMed] [Google Scholar]
  4. Miller A. G., Colman B. Evidence for HCO(3) Transport by the Blue-Green Alga (Cyanobacterium) Coccochloris peniocystis. Plant Physiol. 1980 Feb;65(2):397–402. doi: 10.1104/pp.65.2.397. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Paschinger H. DCCD induced sodium uptake by Anacystis nidulans. Arch Microbiol. 1977 Jun 20;113(3):285–291. doi: 10.1007/BF00492037. [DOI] [PubMed] [Google Scholar]
  6. Stanier R. Y., Kunisawa R., Mandel M., Cohen-Bazire G. Purification and properties of unicellular blue-green algae (order Chroococcales). Bacteriol Rev. 1971 Jun;35(2):171–205. doi: 10.1128/br.35.2.171-205.1971. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES