Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1991 May;87(5):1798–1804. doi: 10.1172/JCI115200

Role of CD11/CD18 in shear rate-dependent leukocyte-endothelial cell interactions in cat mesenteric venules.

M A Perry 1, D N Granger 1
PMCID: PMC295296  PMID: 1673690

Abstract

In vivo microscopy was used to assess the relationships among shear rate (and shear stress), leukocyte rolling velocity, and leukocyte adherence in a cat mesentery preparation. Shear rate in individual venules and arterioles of 25-35 microns diameter were varied over a wide range by graded occlusion of an arterial loop. There was a linear decline in leukocyte rolling velocity (Vwbc) as red cell velocity (Vrbc) was reduced. The ratio Vwbc/Vrbc remained constant despite variations in shear stress from 5-25 dyn/cm2. A reduction in shear stress was associated with an increased leukocyte adherence, particularly when Vwbc was reduced below 50 microns/s. Reduction in wall shear rate below 500 s-1 in arterioles allowed 1-3 leukocytes to adhere per 100 microns length of vessel, while venules exposed to the same shear rates had 5-16 adherent leukocytes. In arterioles, leukocyte rolling was only observed at low shear rates. At shear rates less than 250 s-1 leukocyte rolling velocity was faster in arterioles than venules, and the ratio Vwbc/Vrbc for arterioles was 0.08 +/- 0.02, which was fourfold higher than the ratio obtained in venules at similar shear rates. Pretreatment with the CD18-specific antibody (mAb) IB4 increased leukocyte rolling velocity in venules by approximately 20 microns/s at red cell velocities below 2,000 microns/s. mAb IB4 largely prevented the leukocyte adherence to arterioles and venules, and increased the ratio Vwbc/Vrbc observed in venules at low shear elicit a CD18-dependent adhesive interaction between leukocytes and microvascular endothelium, and that differences in shear rates cannot explain the greater propensity for leukocyte rolling and adhesion in venules than arterioles.

Full text

PDF
1804

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Atherton A., Born G. V. Relationship between the velocity of rolling granulocytes and that of the blood flow in venules. J Physiol. 1973 Aug;233(1):157–165. doi: 10.1113/jphysiol.1973.sp010303. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Boxer L. A., Björkstén B., Björk J., Yang H. H., Allen J. M., Baehner R. L. Neutropenia induced by systemic infusion of lactoferrin. J Lab Clin Med. 1982 Jun;99(6):866–872. [PubMed] [Google Scholar]
  3. Firrell J. C., Lipowsky H. H. Leukocyte margination and deformation in mesenteric venules of rat. Am J Physiol. 1989 Jun;256(6 Pt 2):H1667–H1674. doi: 10.1152/ajpheart.1989.256.6.H1667. [DOI] [PubMed] [Google Scholar]
  4. Görög P., Born G. V. Increased adhesiveness of granulocytes in rabbit ear-chamber blood vessels perfused with neuraminidase. Microvasc Res. 1982 May;23(3):380–384. doi: 10.1016/s0026-2862(82)80010-1. [DOI] [PubMed] [Google Scholar]
  5. Hoover R. L., Folger R., Haering W. A., Ware B. R., Karnovsky M. J. Adhesion of leukocytes to endothelium: roles of divalent cations, surface charge, chemotactic agents and substrate. J Cell Sci. 1980 Oct;45:73–86. doi: 10.1242/jcs.45.1.73. [DOI] [PubMed] [Google Scholar]
  6. House S. D., Lipowsky H. H. Leukocyte-endothelium adhesion: microhemodynamics in mesentery of the cat. Microvasc Res. 1987 Nov;34(3):363–379. doi: 10.1016/0026-2862(87)90068-9. [DOI] [PubMed] [Google Scholar]
  7. JANOFF A., ZWEIFACH B. W. ADHESION AND EMIGRATION OF LEUKOCYTES PRODUCED BY CATIONIC PROTEINS OF LYSOSOMES. Science. 1964 Jun 19;144(3625):1456–1458. doi: 10.1126/science.144.3625.1456. [DOI] [PubMed] [Google Scholar]
  8. Lawrence M. B., McIntire L. V., Eskin S. G. Effect of flow on polymorphonuclear leukocyte/endothelial cell adhesion. Blood. 1987 Nov;70(5):1284–1290. [PubMed] [Google Scholar]
  9. Lawrence M. B., Smith C. W., Eskin S. G., McIntire L. V. Effect of venous shear stress on CD18-mediated neutrophil adhesion to cultured endothelium. Blood. 1990 Jan 1;75(1):227–237. [PubMed] [Google Scholar]
  10. Lipowsky H. H., Kovalcheck S., Zweifach B. W. The distribution of blood rheological parameters in the microvasculature of cat mesentery. Circ Res. 1978 Nov;43(5):738–749. doi: 10.1161/01.res.43.5.738. [DOI] [PubMed] [Google Scholar]
  11. Lipowsky H. H., Usami S., Chien S. In vivo measurements of "apparent viscosity" and microvessel hematocrit in the mesentery of the cat. Microvasc Res. 1980 May;19(3):297–319. doi: 10.1016/0026-2862(80)90050-3. [DOI] [PubMed] [Google Scholar]
  12. Rosen H., Gordon S. Current status review: adhesion molecules and myelomonocytic cell-endothelial interactions. Br J Exp Pathol. 1989 Jun;70(3):385–394. [PMC free article] [PubMed] [Google Scholar]
  13. Schmid-Schoenbein G. W., Fung Y. C., Zweifach B. W. Vascular endothelium-leukocyte interaction; sticking shear force in venules. Circ Res. 1975 Jan;36(1):173–184. doi: 10.1161/01.res.36.1.173. [DOI] [PubMed] [Google Scholar]
  14. Schmid-Schönbein G. W., Skalak R., Simon S. I., Engler R. L. The interaction between leukocytes and endothelium in vivo. Ann N Y Acad Sci. 1987;516:348–361. doi: 10.1111/j.1749-6632.1987.tb33055.x. [DOI] [PubMed] [Google Scholar]
  15. Schmid-Schönbein G. W., Usami S., Skalak R., Chien S. The interaction of leukocytes and erythrocytes in capillary and postcapillary vessels. Microvasc Res. 1980 Jan;19(1):45–70. doi: 10.1016/0026-2862(80)90083-7. [DOI] [PubMed] [Google Scholar]
  16. Suzuki M., Inauen W., Kvietys P. R., Grisham M. B., Meininger C., Schelling M. E., Granger H. J., Granger D. N. Superoxide mediates reperfusion-induced leukocyte-endothelial cell interactions. Am J Physiol. 1989 Nov;257(5 Pt 2):H1740–H1745. doi: 10.1152/ajpheart.1989.257.5.H1740. [DOI] [PubMed] [Google Scholar]
  17. Thivolet J., Faure M., Thomas L., Gaucherand M., de Grouchy J., Malpuech G. NM1 keratinocytes display biochemical markers of keratinization. J Invest Dermatol. 1989 Oct;93(4):535–535. doi: 10.1111/1523-1747.ep12284278. [DOI] [PubMed] [Google Scholar]
  18. Tsai H. M., Sussman I. I., Nagel R. L., Kaul D. K. Desmopressin induces adhesion of normal human erythrocytes to the endothelial surface of a perfused microvascular preparation. Blood. 1990 Jan 1;75(1):261–265. [PubMed] [Google Scholar]
  19. Worthen G. S., Smedly L. A., Tonnesen M. G., Ellis D., Voelkel N. F., Reeves J. T., Henson P. M. Effects of shear stress on adhesive interaction between neutrophils and cultured endothelial cells. J Appl Physiol (1985) 1987 Nov;63(5):2031–2041. doi: 10.1152/jappl.1987.63.5.2031. [DOI] [PubMed] [Google Scholar]
  20. Zimmerman G. A., Hill H. R. Inflammatory mediators stimulate granulocyte adherence to cultured human endothelial cells. Thromb Res. 1984 Jul 15;35(2):203–217. doi: 10.1016/0049-3848(84)90215-9. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES