Abstract
Previous studies have shown increased nucleotide pyrophosphohydrolase (EC 3.6.1.8) (NTPPHase) activity in detergent extracts of degenerated human cartilage containing calcium pyrophosphate dihydrate (CPPD) crystals relative to those from osteoarthritis or normal cartilage. NTPPHase was later shown to be an ectoenzyme and its activity was increased in synovial fluid from patients with CPPD crystal deposits relative to fluids from other types of arthritis. We have purified a soluble 61-kD NTPPHase from conditioned media of organ-cultured porcine articular cartilage to electrophoretic homogeneity. Its NH2-terminal sequence through 26 cycles showed < 30% homology to any previously reported protein sequence. An antibody raised to a synthetic peptide corresponding to this sequence reacted with denatured but not native enzyme. This antibody reacted against a sedimentable vesicle-associated 127-kD protein in conditioned media from cultured articular cartilage or from chondrocytes in primary monolayer culture and against a series of soluble proteins in conditioned media supernatant, including a 61-kD protein representing our original isolate. No reactivity was found in 1% SDS extracts of washed cultured chondrocytes, although these contained greater NTPPHase activity than the conditioned media. Antibody to PC-1, another ectoNTPPHase, reacted with 1% SDS extracts of whole chondrocytes but not against those chromatographic fractions containing the major portion of NTPPHase activity. Release of the vesicle-associated 127-kD enzyme into conditioned medium was stimulated three- to sevenfold by TGF beta 1. The antibody also reacted with a series of soluble proteins and with 127-kD sedimentable protein in human synovial fluid. Kinetic studies supported the existence of a unique vesicle-associated NTPPHase; apparent Km (mM) of chondrocyte membrane NTPPHase was 1.5 and 3.0 at pH 7.3 and 9.88, respectively; apparent Km (mM) of vesicle associated NTPPHase was 0.83 and 1.28 at pH 7.3 and 9.88. The data suggest the existence of a unique ecto-NTPPHase associated with vesicles derived from normal articular cartilage.
Full text
PDFImages in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Caswell A. M., Ali S. Y., Russell R. G. Nucleoside triphosphate pyrophosphatase of rabbit matrix vesicles, a mechanism for the generation of inorganic pyrophosphate in epiphyseal cartilage. Biochim Biophys Acta. 1987 May 19;924(2):276–283. doi: 10.1016/0304-4165(87)90023-7. [DOI] [PubMed] [Google Scholar]
- Caswell A. M., Russell R. G. Identification of ecto-nucleoside triphosphate pyrophosphatase in human articular chondrocytes in monolayer culture. Biochim Biophys Acta. 1985 Oct 30;847(1):40–47. doi: 10.1016/0167-4889(85)90150-8. [DOI] [PubMed] [Google Scholar]
- Cheung C. P., Suhadolnik R. J. Analysis of inorganic pyrophosphate at the picomole level. Anal Biochem. 1977 Nov;83(1):61–63. doi: 10.1016/0003-2697(77)90510-3. [DOI] [PubMed] [Google Scholar]
- Cheung H. S., Ryan L. M. A method for determining DNA and chondrocyte content of articular cartilage. Anal Biochem. 1981 Sep 1;116(1):93–97. doi: 10.1016/0003-2697(81)90327-4. [DOI] [PubMed] [Google Scholar]
- Derfus B. A., Rachow J. W., Mandel N. S., Boskey A. L., Buday M., Kushnaryov V. M., Ryan L. M. Articular cartilage vesicles generate calcium pyrophosphate dihydrate-like crystals in vitro. Arthritis Rheum. 1992 Feb;35(2):231–240. doi: 10.1002/art.1780350218. [DOI] [PubMed] [Google Scholar]
- Funakoshi I., Kato H., Horie K., Yano T., Hori Y., Kobayashi H., Inoue T., Suzuki H., Fukui S., Tsukahara M. Molecular cloning of cDNAs for human fibroblast nucleotide pyrophosphatase. Arch Biochem Biophys. 1992 May 15;295(1):180–187. doi: 10.1016/0003-9861(92)90504-p. [DOI] [PubMed] [Google Scholar]
- Gordon G. V., Villanueva T., Schumacher H. R., Gohel V. Autopsy study correlating degree of osteoarthritis, synovitis and evidence of articular calcification. J Rheumatol. 1984 Oct;11(5):681–686. [PubMed] [Google Scholar]
- Haas A. L., Bright P. M. The immunochemical detection and quantitation of intracellular ubiquitin-protein conjugates. J Biol Chem. 1985 Oct 15;260(23):12464–12473. [PubMed] [Google Scholar]
- Halverson P. B., McCarty D. J. Identification of hydroxyapatite crystals in synovial fluid. Arthritis Rheum. 1979 Apr;22(4):389–395. doi: 10.1002/art.1780220412. [DOI] [PubMed] [Google Scholar]
- Halverson P. B., McCarty D. J. Patterns of radiographic abnormalities associated with basic calcium phosphate and calcium pyrophosphate dihydrate crystal deposition in the knee. Ann Rheum Dis. 1986 Jul;45(7):603–605. doi: 10.1136/ard.45.7.603. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Harahap A. R., Goding J. W. Distribution of the murine plasma cell antigen PC-1 in non-lymphoid tissues. J Immunol. 1988 Oct 1;141(7):2317–2320. [PubMed] [Google Scholar]
- LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
- Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
- Rachow J. W., Ryan L. M. Adenosine triphosphate pyrophosphohydrolase and neutral inorganic pyrophosphatase in pathologic joint fluids. Elevated pyrophosphohydrolase in calcium pyrophosphate dihydrate crystal deposition disease. Arthritis Rheum. 1985 Nov;28(11):1283–1288. doi: 10.1002/art.1780281113. [DOI] [PubMed] [Google Scholar]
- Rachow J. W., Ryan L. M., McCarty D. J., Halverson P. C. Synovial fluid inorganic pyrophosphate concentration and nucleotide pyrophosphohydrolase activity in basic calcium phosphate deposition arthropathy and Milwaukee shoulder syndrome. Arthritis Rheum. 1988 Mar;31(3):408–413. doi: 10.1002/art.1780310313. [DOI] [PubMed] [Google Scholar]
- Rebbe N. F., Tong B. D., Finley E. M., Hickman S. Identification of nucleotide pyrophosphatase/alkaline phosphodiesterase I activity associated with the mouse plasma cell differentiation antigen PC-1. Proc Natl Acad Sci U S A. 1991 Jun 15;88(12):5192–5196. doi: 10.1073/pnas.88.12.5192. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rebbe N. F., Tong B. D., Hickman S. Expression of nucleotide pyrophosphatase and alkaline phosphodiesterase I activities of PC-1, the murine plasma cell antigen. Mol Immunol. 1993 Jan;30(1):87–93. doi: 10.1016/0161-5890(93)90429-f. [DOI] [PubMed] [Google Scholar]
- Rosenthal A. K., Cheung H. S., Ryan L. M. Transforming growth factor beta 1 stimulates inorganic pyrophosphate elaboration by porcine cartilage. Arthritis Rheum. 1991 Jul;34(7):904–911. doi: 10.1002/art.1780340717. [DOI] [PubMed] [Google Scholar]
- Rosenthal A. K., McCarty B. A., Cheung H. S., Ryan L. M. A comparison of the effect of transforming growth factor beta 1 on pyrophosphate elaboration from various articular tissues. Arthritis Rheum. 1993 Apr;36(4):539–542. doi: 10.1002/art.1780360415. [DOI] [PubMed] [Google Scholar]
- Ryan L. M., Kurup I. V., Derfus B. A., Kushnaryov V. M. ATP-induced chondrocalcinosis. Arthritis Rheum. 1992 Dec;35(12):1520–1525. doi: 10.1002/art.1780351216. [DOI] [PubMed] [Google Scholar]
- Ryan L. M., Rachow J. W., McCarty D. J. Synovial fluid ATP: a potential substrate for the production of inorganic pyrophosphate. J Rheumatol. 1991 May;18(5):716–720. [PubMed] [Google Scholar]
- Ryan L. M., Wortmann R. L., Karas B., Lynch M. P., McCarty D. J. Pyrophosphohydrolase activity and inorganic pyrophosphate content of cultured human skin fibroblasts. Elevated levels in some patients with calcium pyrophosphate dihydrate deposition disease. J Clin Invest. 1986 May;77(5):1689–1693. doi: 10.1172/JCI112487. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ryan L. M., Wortmann R. L., Karas B., McCarty D. J., Jr Cartilage nucleoside triphosphate (NTP) pyrophosphohydrolase. I. Identification as an ecto-enzyme. Arthritis Rheum. 1984 Apr;27(4):404–409. doi: 10.1002/art.1780270407. [DOI] [PubMed] [Google Scholar]
- SUGINO Y., MIYOSHI Y. THE SPECIFIC PRECIPITATION OF ORTHOPHOSPHATE AND SOME BIOCHEMICAL APPLICATIONS. J Biol Chem. 1964 Jul;239:2360–2364. [PubMed] [Google Scholar]
- Siegel S. A., Hummel C. F., Carty R. P. The role of nucleoside triphosphate pyrophosphohydrolase in in vitro nucleoside triphosphate-dependent matrix vesicle calcification. J Biol Chem. 1983 Jul 25;258(14):8601–8607. [PubMed] [Google Scholar]
- Takahashi T., Old L. J., Boyse E. A. Surface alloantigens of plasma cells. J Exp Med. 1970 Jun 1;131(6):1325–1341. doi: 10.1084/jem.131.6.1325. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Thomas T. C., McNamee M. G. Purification of membrane proteins. Methods Enzymol. 1990;182:499–520. doi: 10.1016/0076-6879(90)82040-9. [DOI] [PubMed] [Google Scholar]