Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1995 Apr;95(4):1457–1463. doi: 10.1172/JCI117816

Regulation of G-protein alpha i2 subunit expression by oxidized low-density lipoprotein.

J K Liao 1, S L Clark 1
PMCID: PMC295627  PMID: 7706449

Abstract

Oxidized low-density lipoprotein (LDL) inhibits signalling pathways mediated by pertussis toxin-sensitive guanine nucleotide-binding proteins (Gi proteins). To determine whether this inhibition is due to altered G protein alpha i subunit expression, mRNA and protein levels of alpha i isoforms were assessed in bovine aortic endothelial cells treated with oxidized LDL (0-100 micrograms/ml, 0-72 h). Oxidized LDL did not affect the expression of alpha i3, but did cause time- and concentration-dependent decrease in alpha i2 mRNA and protein resulting in a 3.2- and 3.5-fold reduction, respectively, after 72 h. This decrease in alpha i2 coincided with a 86% decrease in alpha i2 GTPase activity. Nuclear run-off studies did not show any significant effect of oxidized LDL on alpha i2 or alpha i3 transcription. In the presence of actinomycin D, oxidized LDL shortened the t1/2 of alpha i2 mRNA from 16 h to 8 h which was attenuated by cycloheximide. In addition, pulse-chase labelling with [35S]methionine revealed that oxidized LDL reduced the t1/2 of alpha i2 protein from 27 to 14 h. Our results indicate that oxidized LDL can modulate receptor-Gi coupling by downregulating the expression of alpha i2, but not alpha i3. The mechanism involves both mRNA destabilization and protein degradation.

Full text

PDF
1460

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Andrews H. E., Bruckdorfer K. R., Dunn R. C., Jacobs M. Low-density lipoproteins inhibit endothelium-dependent relaxation in rabbit aorta. Nature. 1987 May 21;327(6119):237–239. doi: 10.1038/327237a0. [DOI] [PubMed] [Google Scholar]
  2. Baker D. P., Van Lenten B. J., Fogelman A. M., Edwards P. A., Kean C., Berliner J. A. LDL, scavenger, and beta-VLDL receptors on aortic endothelial cells. Arteriosclerosis. 1984 May-Jun;4(3):248–255. doi: 10.1161/01.atv.4.3.248. [DOI] [PubMed] [Google Scholar]
  3. Cohen R. A., Zitnay K. M., Haudenschild C. C., Cunningham L. D. Loss of selective endothelial cell vasoactive functions caused by hypercholesterolemia in pig coronary arteries. Circ Res. 1988 Nov;63(5):903–910. doi: 10.1161/01.res.63.5.903. [DOI] [PubMed] [Google Scholar]
  4. Cooke J. P., Rossitch E., Jr, Andon N. A., Loscalzo J., Dzau V. J. Flow activates an endothelial potassium channel to release an endogenous nitrovasodilator. J Clin Invest. 1991 Nov;88(5):1663–1671. doi: 10.1172/JCI115481. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Esterbauer H., Dieber-Rotheneder M., Waeg G., Striegl G., Jürgens G. Biochemical, structural, and functional properties of oxidized low-density lipoprotein. Chem Res Toxicol. 1990 Mar-Apr;3(2):77–92. doi: 10.1021/tx00014a001. [DOI] [PubMed] [Google Scholar]
  6. Flavahan N. A. Atherosclerosis or lipoprotein-induced endothelial dysfunction. Potential mechanisms underlying reduction in EDRF/nitric oxide activity. Circulation. 1992 May;85(5):1927–1938. doi: 10.1161/01.cir.85.5.1927. [DOI] [PubMed] [Google Scholar]
  7. Foster J. D., Strauss J. F., 3rd, Paavola L. G. Cellular events involved in hormonal control of receptor-mediated endocytosis: regulation occurs at multiple sites in the low density lipoprotein pathway, including steps beyond the receptor. Endocrinology. 1993 Jan;132(1):337–350. doi: 10.1210/endo.132.1.8419131. [DOI] [PubMed] [Google Scholar]
  8. Galle J., Mülsch A., Busse R., Bassenge E. Effects of native and oxidized low density lipoproteins on formation and inactivation of endothelium-derived relaxing factor. Arterioscler Thromb. 1991 Jan-Feb;11(1):198–203. doi: 10.1161/01.atv.11.1.198. [DOI] [PubMed] [Google Scholar]
  9. Gallego C., Gupta S. K., Winitz S., Eisfelder B. J., Johnson G. L. Myristoylation of the G alpha i2 polypeptide, a G protein alpha subunit, is required for its signaling and transformation functions. Proc Natl Acad Sci U S A. 1992 Oct 15;89(20):9695–9699. doi: 10.1073/pnas.89.20.9695. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Harrison D. G. From isolated vessels to the catheterization laboratory. Studies of endothelial function in the coronary circulation of humans. Circulation. 1989 Sep;80(3):703–706. doi: 10.1161/01.cir.80.3.703. [DOI] [PubMed] [Google Scholar]
  11. Inoue N., Hirata K., Yamada M., Hamamori Y., Matsuda Y., Akita H., Yokoyama M. Lysophosphatidylcholine inhibits bradykinin-induced phosphoinositide hydrolysis and calcium transients in cultured bovine aortic endothelial cells. Circ Res. 1992 Dec;71(6):1410–1421. doi: 10.1161/01.res.71.6.1410. [DOI] [PubMed] [Google Scholar]
  12. Jacobs M., Plane F., Bruckdorfer K. R. Native and oxidized low-density lipoproteins have different inhibitory effects on endothelium-derived relaxing factor in the rabbit aorta. Br J Pharmacol. 1990 May;100(1):21–26. doi: 10.1111/j.1476-5381.1990.tb12045.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Jones T. L., Simonds W. F., Merendino J. J., Jr, Brann M. R., Spiegel A. M. Myristoylation of an inhibitory GTP-binding protein alpha subunit is essential for its membrane attachment. Proc Natl Acad Sci U S A. 1990 Jan;87(2):568–572. doi: 10.1073/pnas.87.2.568. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Kavanaugh W. M., Harsh G. R., 4th, Starksen N. F., Rocco C. M., Williams L. T. Transcriptional regulation of the A and B chain genes of platelet-derived growth factor in microvascular endothelial cells. J Biol Chem. 1988 Jun 15;263(17):8470–8472. [PubMed] [Google Scholar]
  15. Keaney J. F., Jr, Gaziano J. M., Xu A., Frei B., Curran-Celentano J., Shwaery G. T., Loscalzo J., Vita J. A. Dietary antioxidants preserve endothelium-dependent vessel relaxation in cholesterol-fed rabbits. Proc Natl Acad Sci U S A. 1993 Dec 15;90(24):11880–11884. doi: 10.1073/pnas.90.24.11880. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Keaney J. F., Jr, Gaziano J. M., Xu A., Frei B., Curran-Celentano J., Shwaery G. T., Loscalzo J., Vita J. A. Low-dose alpha-tocopherol improves and high-dose alpha-tocopherol worsens endothelial vasodilator function in cholesterol-fed rabbits. J Clin Invest. 1994 Feb;93(2):844–851. doi: 10.1172/JCI117039. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Kugiyama K., Kerns S. A., Morrisett J. D., Roberts R., Henry P. D. Impairment of endothelium-dependent arterial relaxation by lysolecithin in modified low-density lipoproteins. Nature. 1990 Mar 8;344(6262):160–162. doi: 10.1038/344160a0. [DOI] [PubMed] [Google Scholar]
  18. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  19. Liao J. K., Bettmann M. A., Sandor T., Tucker J. I., Coleman S. M., Creager M. A. Differential impairment of vasodilator responsiveness of peripheral resistance and conduit vessels in humans with atherosclerosis. Circ Res. 1991 Apr;68(4):1027–1034. doi: 10.1161/01.res.68.4.1027. [DOI] [PubMed] [Google Scholar]
  20. Liao J. K., Homcy C. J. Specific receptor-guanine nucleotide binding protein interaction mediates the release of endothelium-derived relaxing factor. Circ Res. 1992 May;70(5):1018–1026. doi: 10.1161/01.res.70.5.1018. [DOI] [PubMed] [Google Scholar]
  21. Liao J. K., Homcy C. J. The G proteins of the G alpha i and G alpha q family couple the bradykinin receptor to the release of endothelium-derived relaxing factor. J Clin Invest. 1993 Nov;92(5):2168–2172. doi: 10.1172/JCI116818. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Liao J. K., Homey C. J. The release of endothelium-derived relaxing factor via alpha 2-adrenergic receptor activation is specifically mediated by Gi alpha 2. J Biol Chem. 1993 Sep 15;268(26):19528–19533. [PubMed] [Google Scholar]
  23. Liao J. K. Inhibition of Gi proteins by low density lipoprotein attenuates bradykinin-stimulated release of endothelial-derived nitric oxide. J Biol Chem. 1994 Apr 29;269(17):12987–12992. [PubMed] [Google Scholar]
  24. McLenachan J. M., Williams J. K., Fish R. D., Ganz P., Selwyn A. P. Loss of flow-mediated endothelium-dependent dilation occurs early in the development of atherosclerosis. Circulation. 1991 Sep;84(3):1273–1278. doi: 10.1161/01.cir.84.3.1273. [DOI] [PubMed] [Google Scholar]
  25. Merkel L. A., Rivera L. M., Bilder G. E., Perrone M. H. Differential alteration of vascular reactivity in rabbit aorta with modest elevation of serum cholesterol. Circ Res. 1990 Sep;67(3):550–555. doi: 10.1161/01.res.67.3.550. [DOI] [PubMed] [Google Scholar]
  26. Minor R. L., Jr, Myers P. R., Guerra R., Jr, Bates J. N., Harrison D. G. Diet-induced atherosclerosis increases the release of nitrogen oxides from rabbit aorta. J Clin Invest. 1990 Dec;86(6):2109–2116. doi: 10.1172/JCI114949. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Mumby S. M., Heukeroth R. O., Gordon J. I., Gilman A. G. G-protein alpha-subunit expression, myristoylation, and membrane association in COS cells. Proc Natl Acad Sci U S A. 1990 Jan;87(2):728–732. doi: 10.1073/pnas.87.2.728. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Ohno M., Gibbons G. H., Dzau V. J., Cooke J. P. Shear stress elevates endothelial cGMP. Role of a potassium channel and G protein coupling. Circulation. 1993 Jul;88(1):193–197. doi: 10.1161/01.cir.88.1.193. [DOI] [PubMed] [Google Scholar]
  29. Parhami F., Fang Z. T., Fogelman A. M., Andalibi A., Territo M. C., Berliner J. A. Minimally modified low density lipoprotein-induced inflammatory responses in endothelial cells are mediated by cyclic adenosine monophosphate. J Clin Invest. 1993 Jul;92(1):471–478. doi: 10.1172/JCI116590. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Parthasarathy S., Barnett J. Phospholipase A2 activity of low density lipoprotein: evidence for an intrinsic phospholipase A2 activity of apoprotein B-100. Proc Natl Acad Sci U S A. 1990 Dec;87(24):9741–9745. doi: 10.1073/pnas.87.24.9741. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Plane F., Bruckdorfer K. R., Kerr P., Steuer A., Jacobs M. Oxidative modification of low-density lipoproteins and the inhibition of relaxations mediated by endothelium-derived nitric oxide in rabbit aorta. Br J Pharmacol. 1992 Jan;105(1):216–222. doi: 10.1111/j.1476-5381.1992.tb14237.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Retsky K. L., Freeman M. W., Frei B. Ascorbic acid oxidation product(s) protect human low density lipoprotein against atherogenic modification. Anti- rather than prooxidant activity of vitamin C in the presence of transition metal ions. J Biol Chem. 1993 Jan 15;268(2):1304–1309. [PubMed] [Google Scholar]
  33. Shimokawa H., Flavahan N. A., Vanhoutte P. M. Loss of endothelial pertussis toxin-sensitive G protein function in atherosclerotic porcine coronary arteries. Circulation. 1991 Feb;83(2):652–660. doi: 10.1161/01.cir.83.2.652. [DOI] [PubMed] [Google Scholar]
  34. Shimokawa H., Flavahan N. A., Vanhoutte P. M. Natural course of the impairment of endothelium-dependent relaxations after balloon endothelium removal in porcine coronary arteries. Possible dysfunction of a pertussis toxin-sensitive G protein. Circ Res. 1989 Sep;65(3):740–753. doi: 10.1161/01.res.65.3.740. [DOI] [PubMed] [Google Scholar]
  35. Steinberg D., Parthasarathy S., Carew T. E., Khoo J. C., Witztum J. L. Beyond cholesterol. Modifications of low-density lipoprotein that increase its atherogenicity. N Engl J Med. 1989 Apr 6;320(14):915–924. doi: 10.1056/NEJM198904063201407. [DOI] [PubMed] [Google Scholar]
  36. Tanner F. C., Noll G., Boulanger C. M., Lüscher T. F. Oxidized low density lipoproteins inhibit relaxations of porcine coronary arteries. Role of scavenger receptor and endothelium-derived nitric oxide. Circulation. 1991 Jun;83(6):2012–2020. doi: 10.1161/01.cir.83.6.2012. [DOI] [PubMed] [Google Scholar]
  37. Tomita T., Ezaki M., Miwa M., Nakamura K., Inoue Y. Rapid and reversible inhibition by low density lipoprotein of the endothelium-dependent relaxation to hemostatic substances in porcine coronary arteries. Heat and acid labile factors in low density lipoprotein mediate the inhibition. Circ Res. 1990 Jan;66(1):18–27. doi: 10.1161/01.res.66.1.18. [DOI] [PubMed] [Google Scholar]
  38. Yagi K. A simple fluorometric assay for lipoperoxide in blood plasma. Biochem Med. 1976 Apr;15(2):212–216. doi: 10.1016/0006-2944(76)90049-1. [DOI] [PubMed] [Google Scholar]
  39. Ylä-Herttuala S., Palinski W., Rosenfeld M. E., Parthasarathy S., Carew T. E., Butler S., Witztum J. L., Steinberg D. Evidence for the presence of oxidatively modified low density lipoprotein in atherosclerotic lesions of rabbit and man. J Clin Invest. 1989 Oct;84(4):1086–1095. doi: 10.1172/JCI114271. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES