Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1991 Nov;88(5):1760–1765. doi: 10.1172/JCI115495

Active site-blocked factor IXa prevents intravascular thrombus formation in the coronary vasculature without inhibiting extravascular coagulation in a canine thrombosis model.

C R Benedict 1, J Ryan 1, B Wolitzky 1, R Ramos 1, M Gerlach 1, P Tijburg 1, D Stern 1
PMCID: PMC295722  PMID: 1939660

Abstract

To assess the contribution of Factor IX/IXa, to intravascular thrombosis, a canine coronary thrombosis model was studied. Thrombus formation was initiated by applying current to a needle in the circumflex coronary artery. When 50% occlusion of the vessel developed, the current was stopped and animals received an intravenous bolus of either saline, bovine glutamyl-glycyl-arginyl-Factor IXa (IXai), a competitive inhibitor of Factor IXa assembly into the intrinsic Factor X activation complex, bovine Factor IX, or heparin. Animals receiving saline or Factor IX developed coronary occlusion due to a fibrin/platelet thrombus in 70 +/- 11 min. In contrast, infusion of IXai prevented thrombus formation completely (greater than 180 min) at doses of 460 and 300 micrograms/kg, and partially blocked thrombus formation at 150 micrograms/kg. IXai attenuated the accumulation of 125I-fibrinogen/fibrin at the site of the thrombus by approximately 67% (P less than 0.001) and resulted in approximately 26% decrease in serotonin release from platelets in coronary sinus (P less than 0.05). Hemostatic variables in animals receiving IXai, remained within normal limits. Animals given heparin in a concentration sufficient to prevent occlusive thrombosis had markedly increased bleeding, whereas heparin levels that maintained extravascular hemostasis did not prevent intracoronary thrombosis. This suggests that Factor IX/IXa can contribute to thrombus formation, and that inhibition of IXa participation in the clotting mechanism blocks intravascular thrombosis without impairing extravascular hemostasis.

Full text

PDF
1763

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ahmad S. S., Rawala-Sheikh R., Ashby B., Walsh P. N. Platelet receptor-mediated factor X activation by factor IXa. High-affinity factor IXa receptors induced by factor VIII are deficient on platelets in Scott syndrome. J Clin Invest. 1989 Sep;84(3):824–828. doi: 10.1172/JCI114242. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Ahmad S. S., Rawala-Sheikh R., Walsh P. N. Comparative interactions of factor IX and factor IXa with human platelets. J Biol Chem. 1989 Feb 25;264(6):3244–3251. [PubMed] [Google Scholar]
  3. Bach R. R. Initiation of coagulation by tissue factor. CRC Crit Rev Biochem. 1988;23(4):339–368. doi: 10.3109/10409238809082548. [DOI] [PubMed] [Google Scholar]
  4. Bajaj M. S., Kuppuswamy M. N., Saito H., Spitzer S. G., Bajaj S. P. Cultured normal human hepatocytes do not synthesize lipoprotein-associated coagulation inhibitor: evidence that endothelium is the principal site of its synthesis. Proc Natl Acad Sci U S A. 1990 Nov;87(22):8869–8873. doi: 10.1073/pnas.87.22.8869. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Bauer K. A., Kass B. L., ten Cate H., Hawiger J. J., Rosenberg R. D. Factor IX is activated in vivo by the tissue factor mechanism. Blood. 1990 Aug 15;76(4):731–736. [PubMed] [Google Scholar]
  6. Benedict C. R., Mathew B., Rex K. A., Cartwright J., Jr, Sordahl L. A. Correlation of plasma serotonin changes with platelet aggregation in an in vivo dog model of spontaneous occlusive coronary thrombus formation. Circ Res. 1986 Jan;58(1):58–67. doi: 10.1161/01.res.58.1.58. [DOI] [PubMed] [Google Scholar]
  7. Bush L. R., Shebuski R. J. In vivo models of arterial thrombosis and thrombolysis. FASEB J. 1990 Oct;4(13):3087–3098. doi: 10.1096/fasebj.4.13.2210155. [DOI] [PubMed] [Google Scholar]
  8. Cierniewski C. S., Kowalska M. A., Krajewski T., Janiak A. Binding of fibrinogen molecules to pig platelets and their membranes. Biochim Biophys Acta. 1982 Feb 25;714(3):543–548. doi: 10.1016/0304-4165(82)90166-0. [DOI] [PubMed] [Google Scholar]
  9. Drake T. A., Morrissey J. H., Edgington T. S. Selective cellular expression of tissue factor in human tissues. Implications for disorders of hemostasis and thrombosis. Am J Pathol. 1989 May;134(5):1087–1097. [PMC free article] [PubMed] [Google Scholar]
  10. Fujikawa K., Legaz M. E., Kato H., Davie E. W. The mechanism of activation of bovine factor IX (Christmas factor) by bovine factor XIa (activated plasma thromboplastin antecedent). Biochemistry. 1974 Oct 22;13(22):4508–4516. doi: 10.1021/bi00719a006. [DOI] [PubMed] [Google Scholar]
  11. Fujikawa K., Thompson A. R., Legaz M. E., Meyer R. G., Davie E. W. Isolation and characterization of bovine factor IX (Christmas factor). Biochemistry. 1973 Nov 20;12(24):4938–4945. doi: 10.1021/bi00748a019. [DOI] [PubMed] [Google Scholar]
  12. Gitel S. N., Stephenson R. C., Wessler S. In vitro and in vivo correlation of clotting protease activity: effect of heparin. Proc Natl Acad Sci U S A. 1977 Jul;74(7):3028–3032. doi: 10.1073/pnas.74.7.3028. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Gurewich V., Nunn T., Lipinski B. Activation of intrinsic or extrinsic blood coagulation in experimental venous thrombosis and disseminated intravascular coagulation: pathogenetic differences. Thromb Res. 1979;14(6):931–940. doi: 10.1016/0049-3848(79)90011-2. [DOI] [PubMed] [Google Scholar]
  14. Hussain M. N., Benedict C. R. Radioenzymatic microassay for picogram quantities of serotonin or acetylserotonin in biological fluids and tissues. Biochem Med Metab Biol. 1987 Jun;37(3):314–322. doi: 10.1016/0885-4505(87)90042-9. [DOI] [PubMed] [Google Scholar]
  15. Marlar R. A., Kleiss A. J., Griffin J. H. An alternative extrinsic pathway of human blood coagulation. Blood. 1982 Dec;60(6):1353–1358. [PubMed] [Google Scholar]
  16. Nemerson Y. Tissue factor and hemostasis. Blood. 1988 Jan;71(1):1–8. [PubMed] [Google Scholar]
  17. Romson J. L., Haack D. W., Lucchesi B. R. Electrical induction of coronary artery thrombosis in the ambulatory canine: a model for in vivo evaluation of anti-thrombotic agents. Thromb Res. 1980 Mar 15;17(6):841–853. doi: 10.1016/0049-3848(80)90249-2. [DOI] [PubMed] [Google Scholar]
  18. Silverberg S. A., Nemerson Y., Zur M. Kinetics of the activation of bovine coagulation factor X by components of the extrinsic pathway. Kinetic behavior of two-chain factor VII in the presence and absence of tissue factor. J Biol Chem. 1977 Dec 10;252(23):8481–8488. [PubMed] [Google Scholar]
  19. Stern D. M., Knitter G., Kisiel W., Nawroth P. P. In vivo evidence of intravascular binding sites for coagulation factor IX. Br J Haematol. 1987 Jun;66(2):227–232. doi: 10.1111/j.1365-2141.1987.tb01303.x. [DOI] [PubMed] [Google Scholar]
  20. Stern D. M., Nawroth P. P., Kisiel W., Vehar G., Esmon C. T. The binding of factor IXa to cultured bovine aortic endothelial cells. Induction of a specific site in the presence of factors VIII and X. J Biol Chem. 1985 Jun 10;260(11):6717–6722. [PubMed] [Google Scholar]
  21. Thompson A. R. Structure, function, and molecular defects of factor IX. Blood. 1986 Mar;67(3):565–572. [PubMed] [Google Scholar]
  22. Warn-Cramer B. J., Almus F. E., Rapaport S. I. Studies of the factor Xa-dependent inhibitor of factor VIIa/tissue factor (extrinsic pathway inhibitor) from cell supernates of cultured human umbilical vein endothelial cells. Thromb Haemost. 1989 Feb 28;61(1):101–105. [PubMed] [Google Scholar]
  23. Weiss H. J., Lages B. Evidence for tissue factor-dependent activation of the classic extrinsic coagulation mechanism in blood obtained from bleeding time wounds. Blood. 1988 Mar;71(3):629–635. [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES