Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1992 Jun;89(6):1974–1980. doi: 10.1172/JCI115805

Alkaline phosphatase induces the mineralization of sheets of collagen implanted subcutaneously in the rat.

W Beertsen 1, T van den Bos 1
PMCID: PMC295899  PMID: 1602003

Abstract

To determine whether alkaline phosphatase (ALP) can cause the mineralization of collagenous matrices in vivo, bovine intestinal ALP was covalently bound to slices of guanidine-extracted demineralized bovine dentin (DDS). The preparations were implanted subcutaneously over the right half of the rat skull. Control slices not treated with the enzyme were implanted over the left half of the skull of the same animals. Specimens were harvested after periods varying from 1 to 4 wk. It was shown that ALP-coupled DDS rapidly accumulated hydroxyapatite crystals. 4 wk after implantation, the content of calcium and phosphate per microgram of hydroxyproline amounted up to 80 and 60%, respectively, of that found in normal bovine dentin. Our observations present direct evidence that ALP may play a crucial role in the induction of hydroxyapatite deposition in collagenous matrices in vivo.

Full text

PDF
1980

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Anderson H. C. Mechanism of mineral formation in bone. Lab Invest. 1989 Mar;60(3):320–330. [PubMed] [Google Scholar]
  2. Beertsen W., Van den Bos T. Alkaline phosphatase induces the deposition of calcified layers in relation to dentin: an in vitro study to mimic the formation of afibrillar acellular cementum. J Dent Res. 1991 Mar;70(3):176–181. doi: 10.1177/00220345910700030401. [DOI] [PubMed] [Google Scholar]
  3. Beertsen W., van den Bos T. Calcification of dentinal collagen by cultured rabbit periosteum: the role of alkaline phosphatase. Matrix. 1989 Mar;9(2):159–171. doi: 10.1016/s0934-8832(89)80035-6. [DOI] [PubMed] [Google Scholar]
  4. Cookson D. J., Levine B. A., Williams R. J., Jontell M., Linde A., de Bernard B. Cation binding by the rat-incisor-dentine phosphoprotein. A spectroscopic investigation. Eur J Biochem. 1980 Sep;110(1):273–278. doi: 10.1111/j.1432-1033.1980.tb04865.x. [DOI] [PubMed] [Google Scholar]
  5. Fisher L. W., Termine J. D. Noncollagenous proteins influencing the local mechanisms of calcification. Clin Orthop Relat Res. 1985 Nov;(200):362–385. [PubMed] [Google Scholar]
  6. Glimcher M. J. The possible role of collagen fibrils and collagen-phosphoprotein complexes in the calcification of bone in vitro and in vivo. Biomaterials. 1990 Jul;11:7–10. [PubMed] [Google Scholar]
  7. Guis M. B., Slootweg R. N., Tonino G. J. A biochemical study of collagen in the periodontal ligament from erupting and non-erupting bovine incisors. Arch Oral Biol. 1973 Feb;18(2):253–263. doi: 10.1016/0003-9969(73)90145-3. [DOI] [PubMed] [Google Scholar]
  8. Huang-Lee L. L., Cheung D. T., Nimni M. E. Biochemical changes and cytotoxicity associated with the degradation of polymeric glutaraldehyde derived crosslinks. J Biomed Mater Res. 1990 Sep;24(9):1185–1201. doi: 10.1002/jbm.820240905. [DOI] [PubMed] [Google Scholar]
  9. Khouja H. I., Bevington A., Kemp G. J., Russell R. G. Calcium and orthophosphate deposits in vitro do not imply osteoblast-mediated mineralization: mineralization by betaglycerophosphate in the absence of osteoblasts. Bone. 1990;11(6):385–391. doi: 10.1016/8756-3282(90)90131-h. [DOI] [PubMed] [Google Scholar]
  10. Kirkpatrick D. S., Bishop S. H. Simplified wet ash procedure for total phosphorus analysis of organophosphonates in biological samples. Anal Chem. 1971 Oct;43(12):1707–1709. doi: 10.1021/ac60306a046. [DOI] [PubMed] [Google Scholar]
  11. Levy R. J., Schoen F. J., Sherman F. S., Nichols J., Hawley M. A., Lund S. A. Calcification of subcutaneously implanted type I collagen sponges. Effects of formaldehyde and glutaraldehyde pretreatments. Am J Pathol. 1986 Jan;122(1):71–82. [PMC free article] [PubMed] [Google Scholar]
  12. Lussi A., Crenshaw M. A., Linde A. Induction and inhibition of hydroxyapatite formation by rat dentine phosphoprotein in vitro. Arch Oral Biol. 1988;33(9):685–691. doi: 10.1016/0003-9969(88)90124-0. [DOI] [PubMed] [Google Scholar]
  13. McGadey J. A tetrazolium method for non-specific alkaline phosphatase. Histochemie. 1970;23(2):180–184. doi: 10.1007/BF00305851. [DOI] [PubMed] [Google Scholar]
  14. McLean F. M., Keller P. J., Genge B. R., Walters S. A., Wuthier R. E. Disposition of preformed mineral in matrix vesicles. Internal localization and association with alkaline phosphatase. J Biol Chem. 1987 Aug 5;262(22):10481–10488. [PubMed] [Google Scholar]
  15. NEUMAN W. F., DISTEFANO V., MULRYAN B. J. The surface chemistry of bone. III. Observations on the role of phosphatase. J Biol Chem. 1951 Nov;193(1):227–235. [PubMed] [Google Scholar]
  16. Nimni M. E., Cheung D., Strates B., Kodama M., Sheikh K. Chemically modified collagen: a natural biomaterial for tissue replacement. J Biomed Mater Res. 1987 Jun;21(6):741–771. doi: 10.1002/jbm.820210606. [DOI] [PubMed] [Google Scholar]
  17. Robison R. The Possible Significance of Hexosephosphoric Esters in Ossification. Biochem J. 1923;17(2):286–293. doi: 10.1042/bj0170286. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Stegemann H., Stalder K. Determination of hydroxyproline. Clin Chim Acta. 1967 Nov;18(2):267–273. doi: 10.1016/0009-8981(67)90167-2. [DOI] [PubMed] [Google Scholar]
  19. Tenenbaum H. C., Heersche J. N. Differentiation of osteoblasts and formation of mineralized bone in vitro. Calcif Tissue Int. 1982 Jan;34(1):76–79. doi: 10.1007/BF02411212. [DOI] [PubMed] [Google Scholar]
  20. Van Noorden C. J., Jonges G. N. Quantification of the histochemical reaction for alkaline phosphatase activity using the indoxyl-tetranitro BT method. Histochem J. 1987 Feb;19(2):94–102. doi: 10.1007/BF01682753. [DOI] [PubMed] [Google Scholar]
  21. Veis A., Perry A. The phosphoprotein of the dentin matrix. Biochemistry. 1967 Aug;6(8):2409–2416. doi: 10.1021/bi00860a017. [DOI] [PubMed] [Google Scholar]
  22. Weiss M. J., Cole D. E., Ray K., Whyte M. P., Lafferty M. A., Mulivor R. A., Harris H. A missense mutation in the human liver/bone/kidney alkaline phosphatase gene causing a lethal form of hypophosphatasia. Proc Natl Acad Sci U S A. 1988 Oct;85(20):7666–7669. doi: 10.1073/pnas.85.20.7666. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Wuthier R. E. A review of the primary mechanism of endochondral calcification with special emphasis on the role of cells, mitochondria and matrix vesicles. Clin Orthop Relat Res. 1982 Sep;(169):219–242. [PubMed] [Google Scholar]
  24. de Bernard B., Bianco P., Bonucci E., Costantini M., Lunazzi G. C., Martinuzzi P., Modricky C., Moro L., Panfili E., Pollesello P. Biochemical and immunohistochemical evidence that in cartilage an alkaline phosphatase is a Ca2+-binding glycoprotein. J Cell Biol. 1986 Oct;103(4):1615–1623. doi: 10.1083/jcb.103.4.1615. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. van den Bos T., Beertsen W. Effects of 1-hydroxyethylidene-1, 1-bisphosphonate (HEBP) on the synthesis of dentin matrix proteins in the mouse. Coll Relat Res. 1987 Jun;7(2):135–147. doi: 10.1016/s0174-173x(87)80005-5. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES