Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2008 Oct 22;64(Pt 11):o2164. doi: 10.1107/S1600536808032224

2-Formyl-3-hydr­oxy-9,10-anthroquinone

Nor Hadiani Ismail a, Che Puteh Osman a, Khalijah Awang b, Sri Nurestri Abdul Malek c, Seik Weng Ng b,*
PMCID: PMC2959712  PMID: 21581024

Abstract

The mol­ecule of the title compound, C15H8O4, is approximately planar. An intra­molecular O—H⋯O hydrogen bond is observed between the hydr­oxy and formyl groups. The crystal used was a nonmerohedral twin, with a minor twin component of 15.9%.

Related literature

For anti­leshmanial and anti­plasmodial activities, see: Sittie et al. (1999). For the treatment of twinned diffraction data, see: Spek (2003).graphic file with name e-64-o2164-scheme1.jpg

Experimental

Crystal data

  • C15H8O4

  • M r = 252.21

  • Triclinic, Inline graphic

  • a = 6.9194 (2) Å

  • b = 8.0650 (2) Å

  • c = 10.7601 (3) Å

  • α = 86.250 (2)°

  • β = 83.214 (2)°

  • γ = 64.692 (2)°

  • V = 538.96 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.11 mm−1

  • T = 100 (2) K

  • 0.22 × 0.04 × 0.04 mm

Data collection

  • Bruker SMART APEXII area-detector diffractometer

  • Absorption correction: none

  • 4946 measured reflections

  • 2419 independent reflections

  • 1880 reflections with I > 2σ(I)

  • R int = 0.024

Refinement

  • R[F 2 > 2σ(F 2)] = 0.087

  • wR(F 2) = 0.343

  • S = 1.11

  • 2419 reflections

  • 173 parameters

  • H-atom parameters constrained

  • Δρmax = 0.49 e Å−3

  • Δρmin = −0.44 e Å−3

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2008).

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808032224/ci2681sup1.cif

e-64-o2164-sup1.cif (15.7KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808032224/ci2681Isup2.hkl

e-64-o2164-Isup2.hkl (118.8KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2⋯O1 0.84 2.00 2.635 (5) 132

Acknowledgments

The authors thank the University of Malaya for supporting this study.

supplementary crystallographic information

Experimental

Rennellia elliptica Korth from the Rubiaceae family was collected from Kuala Keniam, Pahang, Malaysia. The root was chopped into small pieces and dried. The dried sample (1 kg) was ground and then extracted successively with hexane, dichloromethane and methanol. The dichloromethane extract was concentrated in vacuo to give 27 g crude extract. The crude extract was fractionated by column chromatography. The column (60 cm X 5 cm) was packed with acid-washed silica gel and eluted with hexane, dichloromethane and methanol. Nine fractions were obtained, and 3-hydroxy-2-formyl-9,10-anthraquinone (41.5 mg) was isolated from the third fraction (hexane:dichloromethane, 30:70) by slow evaporation of the solvent mixture. The yellow crystals obtained were washed with acetone.

Refinement

Carbon- and oxygen-bound H-atoms were placed in calculated positions (C—H = 0.95 Å and O—H = 0.84 Å) and were included in the refinement in the riding model approximation, with U(H) set to 1.2–1.5Ueq(C,O). The crystal studied was a non-merohedral twin. The TwinRotMat in PLATON (Spek, 2003) gave the twin law as (-1 0 0, 0 - 1 0, -0.343 - 0.049 1), whose inclusion in the refinement lowered the R index from 11.3 to 8.7%. The twin component refined to 18.9%. The refinement is deemed satisfactory although the wR2 value for all reflections is somewhat high. The structure has a long C5–C14 bond; as the anisotropic displacement parameters are normal, the likely reason is localization of the double bonds in the ring. On the other hand, the C13–C14 bond is somewhat short.

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound, showing 70% probability displacement ellipsoids. H atoms are drawn as spheres of arbitrary radii.

Crystal data

C15H8O4 Z = 2
Mr = 252.21 F(000) = 260
Triclinic, P1 Dx = 1.554 Mg m3
Hall symbol: -P 1 Mo Kα radiation, λ = 0.71073 Å
a = 6.9194 (2) Å Cell parameters from 1888 reflections
b = 8.0650 (2) Å θ = 3.3–28.3°
c = 10.7601 (3) Å µ = 0.11 mm1
α = 86.250 (2)° T = 100 K
β = 83.214 (2)° Block, yellow
γ = 64.692 (2)° 0.22 × 0.04 × 0.04 mm
V = 538.96 (3) Å3

Data collection

Bruker SMART APEXII area-detector diffractometer 1880 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tube Rint = 0.024
graphite θmax = 27.5°, θmin = 2.8°
ω scans h = −8→8
4946 measured reflections k = −10→10
2419 independent reflections l = −13→13

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.087 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.343 H-atom parameters constrained
S = 1.11 w = 1/[σ2(Fo2) + (0.1778P)2 + 2.2381P] where P = (Fo2 + 2Fc2)/3
2419 reflections (Δ/σ)max = 0.001
173 parameters Δρmax = 0.49 e Å3
0 restraints Δρmin = −0.44 e Å3

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 0.3155 (6) 0.6486 (5) 0.0888 (3) 0.0251 (8)
O2 0.2501 (6) 0.3493 (5) 0.0941 (3) 0.0242 (8)
H2 0.2611 0.4345 0.0490 0.029*
O3 0.2366 (5) −0.0898 (4) 0.4383 (3) 0.0153 (7)
O4 0.2779 (5) 0.4648 (4) 0.6688 (3) 0.0172 (7)
C1 0.3060 (7) 0.6395 (6) 0.2041 (4) 0.0178 (9)
H1 0.3171 0.7336 0.2474 0.021*
C2 0.2786 (7) 0.4901 (6) 0.2772 (4) 0.0143 (9)
C3 0.2544 (7) 0.3500 (6) 0.2187 (4) 0.0161 (9)
C4 0.2356 (7) 0.2059 (6) 0.2894 (4) 0.0152 (9)
H4 0.2187 0.1116 0.2500 0.018*
C5 0.2419 (6) 0.2016 (5) 0.4183 (4) 0.0123 (8)
C6 0.2335 (6) 0.0406 (5) 0.4916 (4) 0.0112 (8)
C7 0.2285 (6) 0.0417 (5) 0.6299 (4) 0.0112 (8)
C8 0.2117 (7) −0.1043 (6) 0.7003 (4) 0.0139 (8)
H8 0.1986 −0.1999 0.6601 0.017*
C9 0.2144 (7) −0.1091 (6) 0.8286 (4) 0.0179 (9)
H9 0.2031 −0.2083 0.8766 0.021*
C10 0.2336 (7) 0.0310 (6) 0.8883 (4) 0.0188 (9)
H10 0.2353 0.0269 0.9767 0.023*
C11 0.2503 (7) 0.1762 (6) 0.8187 (4) 0.0173 (9)
H11 0.2645 0.2709 0.8594 0.021*
C12 0.2462 (6) 0.1835 (5) 0.6895 (4) 0.0113 (8)
C13 0.2641 (6) 0.3403 (6) 0.6165 (4) 0.0126 (8)
C14 0.2621 (6) 0.3426 (5) 0.4787 (4) 0.0120 (8)
C15 0.2815 (7) 0.4851 (6) 0.4072 (4) 0.0133 (8)
H15 0.2968 0.5801 0.4468 0.016*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.038 (2) 0.0258 (18) 0.0125 (16) −0.0155 (16) −0.0033 (13) 0.0054 (13)
O2 0.046 (2) 0.0283 (18) 0.0063 (15) −0.0226 (17) −0.0062 (13) 0.0020 (12)
O3 0.0194 (15) 0.0131 (14) 0.0147 (15) −0.0079 (12) −0.0028 (11) −0.0009 (11)
O4 0.0228 (16) 0.0148 (15) 0.0165 (15) −0.0103 (13) −0.0003 (12) −0.0039 (11)
C1 0.021 (2) 0.017 (2) 0.016 (2) −0.0078 (17) −0.0040 (16) 0.0035 (16)
C2 0.0146 (19) 0.0149 (19) 0.0119 (19) −0.0053 (16) −0.0011 (14) 0.0030 (15)
C3 0.017 (2) 0.021 (2) 0.0103 (19) −0.0080 (17) −0.0030 (15) 0.0010 (15)
C4 0.016 (2) 0.016 (2) 0.014 (2) −0.0074 (16) −0.0007 (15) −0.0025 (15)
C5 0.0106 (18) 0.0107 (18) 0.0135 (19) −0.0032 (14) 0.0010 (14) 0.0003 (14)
C6 0.0099 (17) 0.0105 (18) 0.0121 (19) −0.0036 (14) −0.0001 (14) −0.0004 (14)
C7 0.0109 (18) 0.0114 (18) 0.0103 (18) −0.0038 (14) −0.0025 (13) 0.0011 (14)
C8 0.0145 (19) 0.0118 (18) 0.015 (2) −0.0053 (15) −0.0023 (15) 0.0013 (14)
C9 0.019 (2) 0.017 (2) 0.017 (2) −0.0081 (17) −0.0012 (16) 0.0055 (16)
C10 0.024 (2) 0.022 (2) 0.0110 (19) −0.0100 (18) −0.0009 (16) 0.0026 (16)
C11 0.021 (2) 0.018 (2) 0.013 (2) −0.0084 (17) −0.0008 (16) −0.0009 (15)
C12 0.0108 (18) 0.0112 (18) 0.0109 (18) −0.0039 (14) −0.0002 (14) −0.0005 (14)
C13 0.0112 (18) 0.0125 (19) 0.0139 (19) −0.0046 (15) −0.0015 (14) −0.0010 (14)
C14 0.0116 (18) 0.0112 (18) 0.0127 (19) −0.0044 (14) 0.0001 (14) −0.0002 (14)
C15 0.0138 (19) 0.0112 (18) 0.014 (2) −0.0049 (15) 0.0006 (14) −0.0017 (14)

Geometric parameters (Å, °)

O1—C1 1.234 (5) C7—C8 1.398 (5)
O2—C3 1.345 (5) C7—C12 1.403 (5)
O2—H2 0.84 C8—C9 1.380 (6)
O3—C6 1.222 (5) C8—H8 0.95
O4—C13 1.226 (5) C9—C10 1.397 (6)
C1—C2 1.464 (6) C9—H9 0.95
C1—H1 0.95 C10—C11 1.388 (6)
C2—C15 1.400 (6) C10—H10 0.95
C2—C3 1.407 (6) C11—C12 1.391 (6)
C3—C4 1.391 (6) C11—H11 0.95
C4—C5 1.390 (6) C12—C13 1.487 (5)
C4—H4 0.95 C13—C14 1.483 (6)
C5—C14 1.410 (6) C14—C15 1.387 (6)
C5—C6 1.494 (5) C15—H15 0.95
C6—C7 1.485 (5)
C3—O2—H2 120.0 C9—C8—H8 120.1
O1—C1—C2 122.8 (4) C7—C8—H8 120.1
O1—C1—H1 118.6 C8—C9—C10 120.4 (4)
C2—C1—H1 118.6 C8—C9—H9 119.8
C15—C2—C3 119.7 (4) C10—C9—H9 119.8
C15—C2—C1 119.1 (4) C11—C10—C9 120.0 (4)
C3—C2—C1 121.2 (4) C11—C10—H10 120.0
O2—C3—C4 117.9 (4) C9—C10—H10 120.0
O2—C3—C2 121.8 (4) C10—C11—C12 120.2 (4)
C4—C3—C2 120.3 (4) C10—C11—H11 119.9
C5—C4—C3 119.2 (4) C12—C11—H11 119.9
C5—C4—H4 120.4 C11—C12—C7 119.6 (4)
C3—C4—H4 120.4 C11—C12—C13 119.4 (4)
C4—C5—C14 121.2 (4) C7—C12—C13 121.1 (3)
C4—C5—C6 118.4 (4) O4—C13—C14 121.0 (4)
C14—C5—C6 120.3 (4) O4—C13—C12 121.0 (4)
O3—C6—C7 121.3 (4) C14—C13—C12 118.0 (3)
O3—C6—C5 120.5 (4) C15—C14—C5 119.0 (4)
C7—C6—C5 118.1 (3) C15—C14—C13 119.7 (4)
C8—C7—C12 120.1 (4) C5—C14—C13 121.3 (4)
C8—C7—C6 118.9 (4) C14—C15—C2 120.5 (4)
C12—C7—C6 121.0 (3) C14—C15—H15 119.8
C9—C8—C7 119.7 (4) C2—C15—H15 119.8
O1—C1—C2—C15 176.5 (4) C10—C11—C12—C7 −1.0 (6)
O1—C1—C2—C3 −2.1 (7) C10—C11—C12—C13 180.0 (4)
C15—C2—C3—O2 179.8 (4) C8—C7—C12—C11 1.0 (6)
C1—C2—C3—O2 −1.7 (7) C6—C7—C12—C11 −177.2 (4)
C15—C2—C3—C4 −0.7 (7) C8—C7—C12—C13 −180.0 (3)
C1—C2—C3—C4 177.9 (4) C6—C7—C12—C13 1.8 (6)
O2—C3—C4—C5 179.3 (4) C11—C12—C13—O4 −1.5 (6)
C2—C3—C4—C5 −0.3 (7) C7—C12—C13—O4 179.4 (4)
C3—C4—C5—C14 1.4 (6) C11—C12—C13—C14 179.2 (4)
C3—C4—C5—C6 −176.7 (4) C7—C12—C13—C14 0.2 (6)
C4—C5—C6—O3 5.1 (6) C4—C5—C14—C15 −1.6 (6)
C14—C5—C6—O3 −173.0 (4) C6—C5—C14—C15 176.4 (3)
C4—C5—C6—C7 −176.8 (4) C4—C5—C14—C13 178.7 (4)
C14—C5—C6—C7 5.1 (6) C6—C5—C14—C13 −3.2 (6)
O3—C6—C7—C8 −4.6 (6) O4—C13—C14—C15 1.6 (6)
C5—C6—C7—C8 177.4 (4) C12—C13—C14—C15 −179.1 (4)
O3—C6—C7—C12 173.7 (4) O4—C13—C14—C5 −178.7 (4)
C5—C6—C7—C12 −4.4 (6) C12—C13—C14—C5 0.6 (6)
C12—C7—C8—C9 −0.5 (6) C5—C14—C15—C2 0.7 (6)
C6—C7—C8—C9 177.7 (4) C13—C14—C15—C2 −179.6 (4)
C7—C8—C9—C10 0.0 (7) C3—C2—C15—C14 0.4 (6)
C8—C9—C10—C11 0.0 (7) C1—C2—C15—C14 −178.1 (4)
C9—C10—C11—C12 0.5 (7)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
O2—H2···O1 0.84 2.00 2.635 (5) 132

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CI2681).

References

  1. Barbour, L. J. (2001). J. Supramol. Chem.1, 189–191.
  2. Bruker (2007). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  4. Sittie, A. A., Lemnmich, E., Olsen, C. E., Hviid, L., Kharazmi, A., Nkrumah, F. K. & Christensen, S. B. (1999). Planta Med.65, 259–261. [DOI] [PubMed]
  5. Spek, A. L. (2003). J. Appl. Cryst.36, 7–13.
  6. Westrip, S. P. (2008). publCIF In preparation.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808032224/ci2681sup1.cif

e-64-o2164-sup1.cif (15.7KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808032224/ci2681Isup2.hkl

e-64-o2164-Isup2.hkl (118.8KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES