Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2008 Apr 30;64(Pt 5):o948. doi: 10.1107/S160053680801235X

N′-(3,5-Dichloro-2-hydroxy­benzyl­idene)-3-methoxy­benzohydrazide methanol solvate

Chun-Hua Ling a, Yan-Bin Chen a, Jian-An Huang a, Cheng Ji a,*, Peng Liu b
PMCID: PMC2961072  PMID: 21202428

Abstract

In the title compound, C15H12Cl2N2O3·CH3OH, the Schiff base mol­ecule is nearly planar, with a dihedral angle of 4.5 (2)° between the two benzene rings. An intra­molecular O—H⋯N hydrogen bond is observed. The methanol solvent mol­ecule is linked to the Schiff base mol­ecule through inter­molecular N—H⋯O and O—H⋯O hydrogen bonds.

Related literature

For the synthesis of Schiff base compounds, see: Herrick et al. (2008); Suresh et al. (2007); Liu et al. (2007). For the background on biological activities, see: Bhandari et al. (2008); Sinha et al. (2008); Sun et al. (2008). For related structures, see: Wang et al. (2008); Tang (2008a ,b ); Yang & Zheng (2007).graphic file with name e-64-0o948-scheme1.jpg

Experimental

Crystal data

  • C15H12Cl2N2O3·CH4O

  • M r = 371.21

  • Triclinic, Inline graphic

  • a = 7.742 (3) Å

  • b = 9.070 (3) Å

  • c = 12.296 (4) Å

  • α = 92.422 (5)°

  • β = 98.948 (5)°

  • γ = 96.954 (5)°

  • V = 845.0 (5) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.41 mm−1

  • T = 298 (2) K

  • 0.27 × 0.23 × 0.20 mm

Data collection

  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996) T min = 0.898, T max = 0.923

  • 6888 measured reflections

  • 3452 independent reflections

  • 2253 reflections with I > 2σ(I)

  • R int = 0.029

Refinement

  • R[F 2 > 2σ(F 2)] = 0.051

  • wR(F 2) = 0.131

  • S = 1.04

  • 3452 reflections

  • 224 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.27 e Å−3

  • Δρmin = −0.24 e Å−3

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S160053680801235X/ci2593sup1.cif

e-64-0o948-sup1.cif (17.5KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S160053680801235X/ci2593Isup2.hkl

e-64-0o948-Isup2.hkl (169.3KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2⋯O4i 0.899 (10) 1.997 (12) 2.881 (3) 167 (3)
O4—H4⋯O2 0.82 2.35 2.989 (3) 135
O4—H4⋯O2ii 0.82 2.34 3.023 (3) 141
O1—H1⋯N1 0.82 1.84 2.557 (3) 145

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

supplementary crystallographic information

Comment

Schiff base compounds can be easily synthesized from the reaction of aldehydes with primary amines (Herrick et al., 2008; Suresh et al., 2007; Liu et al., 2007). These compounds show interesting biological activities, especially antimicrobial activities (Bhandari et al., 2008; Sinha et al., 2008; Sun et al., 2008). Recently, the crystal structures of a few Schiff base compounds obtained from the derivatives of salicylaldehyde with benzohydrazide have been reported (Wang et al., 2008; Tang, 2008a,b; Yang & Zheng, 2007). We report here the crystal structure of a new Schiff base compound, derived from 3,5-dichlorosalicylaldehyde and 3-methoxybenzohydrazide.

The asymmetric unit consists of a Schiff base molecule and a methanol molecule of crystallization (Fig. 1). The Schiff base molecule is nearly planar, with a maximum deviation of 0.133 (1) Å for atom Cl1. The dihedral angle between the two benzene rings is 4.5 (2)°. An intramolecular O—H···N hydrogen bond is observed in the Schiff base molecule. The methanol molecule of crystallization is linked to the Schiff base molecule through intermolecular N—H···O and O—H···O hydrogen bonds (Table 1 and Fig.2).

Experimental

3,5-Dichlorosalicylaldehyde (0.1 mmol, 19.0 mg) and 3-methoxybenzohydrazide (0.1 mmol, 16.6 mg) were dissolved in methanol (20 ml). The mixture was stirred at room temperature to give a clear yellow solution. Yellow block-shaped crystals were formed after a week.

Refinement

Atom H2 was located in a difference Fourier map and refined isotropically, with the N2—H2 distance restrained to 0.90 (1) Å, and with Uiso(H) set to 0.08 Å2. All other H atoms were constrained to idealized geometries, with C–H = 0.93–0.96 Å, O–H = 0.82 Å, and with Uiso(H) = 1.2Ueq(C) and 1.5Ueq(O and methyl C). A rotating group model was used for the methyl and hydroxyl groups.

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound, showing 30% probability displacement ellipsoids. Intramolecular hydrogen bonds are shown as dashed lines.

Fig. 2.

Fig. 2.

The molecular packing of the title compound, viewed along the a axis. Intermolecular hydrogen bonds are shown as dashed lines. H atoms not involved in the hydrogen bonds have been omitted for clarity.

Crystal data

C15H12Cl2N2O3·CH4O Z = 2
Mr = 371.21 F000 = 384
Triclinic, P1 Dx = 1.459 Mg m3
Hall symbol: -P 1 Mo Kα radiation λ = 0.71073 Å
a = 7.742 (3) Å Cell parameters from 1304 reflections
b = 9.070 (3) Å θ = 2.4–24.5º
c = 12.296 (4) Å µ = 0.41 mm1
α = 92.422 (5)º T = 298 (2) K
β = 98.948 (5)º Block, yellow
γ = 96.954 (5)º 0.27 × 0.23 × 0.20 mm
V = 845.0 (5) Å3

Data collection

Bruker SMART CCD area-detector diffractometer 3452 independent reflections
Radiation source: fine-focus sealed tube 2253 reflections with I > 2σ(I)
Monochromator: graphite Rint = 0.029
T = 298(2) K θmax = 26.5º
ω scans θmin = 1.7º
Absorption correction: multi-scan(SADABS; Sheldrick, 1996) h = −9→9
Tmin = 0.898, Tmax = 0.923 k = −11→11
6888 measured reflections l = −15→15

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.051 H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.131   w = 1/[σ2(Fo2) + (0.0565P)2] where P = (Fo2 + 2Fc2)/3
S = 1.04 (Δ/σ)max = 0.001
3452 reflections Δρmax = 0.27 e Å3
224 parameters Δρmin = −0.24 e Å3
1 restraint Extinction correction: none
Primary atom site location: structure-invariant direct methods

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Cl1 0.29231 (9) −0.03639 (9) 0.10217 (6) 0.0659 (3)
Cl2 −0.37695 (9) −0.28076 (8) 0.09465 (6) 0.0636 (3)
O1 0.2383 (2) 0.14041 (19) 0.29003 (15) 0.0532 (5)
H1 0.2219 0.1852 0.3461 0.080*
O2 0.3328 (2) 0.3979 (2) 0.51936 (17) 0.0729 (6)
O3 −0.0405 (3) 0.5968 (2) 0.88407 (15) 0.0659 (6)
O4 0.3034 (2) 0.6965 (2) 0.42945 (18) 0.0677 (6)
H4 0.3679 0.6328 0.4458 0.102*
N1 0.0576 (3) 0.2173 (2) 0.43529 (16) 0.0432 (5)
N2 0.0515 (3) 0.3093 (2) 0.52560 (17) 0.0455 (5)
C1 −0.0641 (3) 0.0367 (3) 0.2932 (2) 0.0408 (6)
C2 0.0927 (3) 0.0466 (3) 0.2486 (2) 0.0406 (6)
C3 0.0983 (3) −0.0464 (3) 0.1565 (2) 0.0432 (6)
C4 −0.0443 (3) −0.1470 (3) 0.1091 (2) 0.0474 (6)
H4A −0.0375 −0.2083 0.0477 0.057*
C5 −0.1966 (3) −0.1549 (3) 0.1541 (2) 0.0448 (6)
C6 −0.2080 (3) −0.0639 (3) 0.2446 (2) 0.0460 (6)
H6 −0.3127 −0.0699 0.2733 0.055*
C7 −0.0786 (3) 0.1315 (3) 0.3889 (2) 0.0483 (7)
H7 −0.1848 0.1295 0.4156 0.058*
C8 0.2044 (3) 0.3995 (3) 0.5653 (2) 0.0438 (6)
C9 0.2074 (3) 0.4983 (3) 0.66579 (19) 0.0419 (6)
C10 0.0683 (3) 0.4953 (3) 0.7255 (2) 0.0422 (6)
H10 −0.0351 0.4307 0.7029 0.051*
C11 0.0864 (3) 0.5898 (3) 0.8188 (2) 0.0469 (6)
C12 0.2406 (4) 0.6849 (3) 0.8525 (2) 0.0557 (7)
H12 0.2523 0.7472 0.9159 0.067*
C13 0.3750 (4) 0.6877 (3) 0.7933 (2) 0.0596 (8)
H13 0.4778 0.7530 0.8161 0.072*
C14 0.3607 (3) 0.5946 (3) 0.6997 (2) 0.0505 (7)
H14 0.4535 0.5966 0.6598 0.061*
C15 −0.2031 (4) 0.5035 (4) 0.8545 (3) 0.0710 (9)
H15A −0.2575 0.5241 0.7821 0.107*
H15B −0.2796 0.5218 0.9066 0.107*
H15C −0.1824 0.4012 0.8547 0.107*
C16 0.3991 (5) 0.8175 (4) 0.3948 (4) 0.1132 (15)
H16A 0.3265 0.8956 0.3822 0.170*
H16B 0.4388 0.7899 0.3274 0.170*
H16C 0.4992 0.8515 0.4503 0.170*
H2 −0.052 (2) 0.307 (3) 0.551 (2) 0.080*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Cl1 0.0460 (4) 0.0854 (6) 0.0652 (5) −0.0006 (4) 0.0214 (3) −0.0269 (4)
Cl2 0.0477 (4) 0.0620 (5) 0.0732 (5) −0.0078 (3) 0.0037 (3) −0.0223 (4)
O1 0.0428 (10) 0.0569 (11) 0.0563 (12) −0.0079 (9) 0.0142 (8) −0.0200 (9)
O2 0.0505 (12) 0.0888 (15) 0.0777 (15) −0.0132 (11) 0.0315 (11) −0.0309 (12)
O3 0.0605 (12) 0.0825 (14) 0.0529 (12) −0.0024 (11) 0.0200 (10) −0.0229 (10)
O4 0.0470 (12) 0.0815 (15) 0.0784 (15) 0.0085 (10) 0.0202 (11) 0.0104 (12)
N1 0.0435 (12) 0.0456 (12) 0.0397 (12) 0.0026 (10) 0.0100 (9) −0.0096 (10)
N2 0.0402 (12) 0.0526 (13) 0.0425 (12) 0.0005 (10) 0.0118 (10) −0.0158 (10)
C1 0.0434 (14) 0.0383 (13) 0.0404 (14) 0.0037 (11) 0.0092 (11) −0.0040 (11)
C2 0.0353 (13) 0.0410 (13) 0.0438 (15) 0.0014 (11) 0.0064 (11) −0.0044 (11)
C3 0.0396 (14) 0.0501 (15) 0.0410 (14) 0.0070 (11) 0.0121 (11) −0.0071 (12)
C4 0.0487 (15) 0.0480 (15) 0.0437 (15) 0.0070 (12) 0.0053 (12) −0.0125 (12)
C5 0.0385 (14) 0.0426 (14) 0.0492 (16) −0.0004 (11) 0.0013 (11) −0.0053 (12)
C6 0.0401 (14) 0.0469 (15) 0.0502 (16) 0.0013 (11) 0.0104 (12) −0.0080 (12)
C7 0.0466 (15) 0.0508 (15) 0.0485 (16) 0.0016 (13) 0.0175 (13) −0.0084 (13)
C8 0.0391 (14) 0.0456 (15) 0.0461 (15) 0.0019 (12) 0.0098 (12) −0.0052 (12)
C9 0.0404 (14) 0.0446 (14) 0.0388 (14) 0.0048 (11) 0.0030 (11) −0.0046 (11)
C10 0.0357 (13) 0.0455 (14) 0.0418 (14) −0.0018 (11) 0.0031 (11) −0.0072 (11)
C11 0.0487 (15) 0.0491 (15) 0.0419 (15) 0.0061 (12) 0.0063 (12) −0.0059 (12)
C12 0.0621 (18) 0.0551 (17) 0.0444 (16) −0.0004 (14) 0.0028 (14) −0.0153 (13)
C13 0.0510 (17) 0.0602 (18) 0.0581 (19) −0.0117 (14) −0.0029 (14) −0.0109 (15)
C14 0.0427 (15) 0.0538 (16) 0.0524 (17) −0.0013 (12) 0.0076 (12) −0.0038 (13)
C15 0.0575 (19) 0.083 (2) 0.075 (2) 0.0027 (17) 0.0269 (16) −0.0150 (18)
C16 0.090 (3) 0.103 (3) 0.148 (4) −0.001 (2) 0.025 (3) 0.045 (3)

Geometric parameters (Å, °)

Cl1—C3 1.730 (2) C5—C6 1.377 (3)
Cl2—C5 1.736 (2) C6—H6 0.93
O1—C2 1.344 (3) C7—H7 0.93
O1—H1 0.82 C8—C9 1.490 (3)
O2—C8 1.219 (3) C9—C14 1.382 (3)
O3—C11 1.367 (3) C9—C10 1.393 (3)
O3—C15 1.417 (3) C10—C11 1.381 (3)
O4—C16 1.369 (4) C10—H10 0.93
O4—H4 0.82 C11—C12 1.381 (3)
N1—C7 1.273 (3) C12—C13 1.358 (4)
N1—N2 1.371 (3) C12—H12 0.93
N2—C8 1.364 (3) C13—C14 1.381 (4)
N2—H2 0.899 (10) C13—H13 0.93
C1—C6 1.390 (3) C14—H14 0.93
C1—C2 1.402 (3) C15—H15A 0.96
C1—C7 1.455 (3) C15—H15B 0.96
C2—C3 1.393 (3) C15—H15C 0.96
C3—C4 1.379 (3) C16—H16A 0.96
C4—C5 1.374 (3) C16—H16B 0.96
C4—H4A 0.93 C16—H16C 0.96
C2—O1—H1 109.5 C14—C9—C10 120.3 (2)
C11—O3—C15 118.7 (2) C14—C9—C8 116.0 (2)
C16—O4—H4 109.5 C10—C9—C8 123.7 (2)
C7—N1—N2 120.9 (2) C11—C10—C9 119.0 (2)
C8—N2—N1 115.25 (19) C11—C10—H10 120.5
C8—N2—H2 127.0 (19) C9—C10—H10 120.5
N1—N2—H2 117.7 (19) O3—C11—C10 124.3 (2)
C6—C1—C2 119.6 (2) O3—C11—C12 115.3 (2)
C6—C1—C7 119.6 (2) C10—C11—C12 120.4 (2)
C2—C1—C7 120.8 (2) C13—C12—C11 120.3 (2)
O1—C2—C3 118.0 (2) C13—C12—H12 119.9
O1—C2—C1 123.7 (2) C11—C12—H12 119.9
C3—C2—C1 118.2 (2) C12—C13—C14 120.7 (2)
C4—C3—C2 122.0 (2) C12—C13—H13 119.7
C4—C3—Cl1 119.52 (18) C14—C13—H13 119.7
C2—C3—Cl1 118.44 (18) C13—C14—C9 119.5 (2)
C5—C4—C3 118.8 (2) C13—C14—H14 120.3
C5—C4—H4A 120.6 C9—C14—H14 120.3
C3—C4—H4A 120.6 O3—C15—H15A 109.5
C4—C5—C6 120.9 (2) O3—C15—H15B 109.5
C4—C5—Cl2 119.08 (19) H15A—C15—H15B 109.5
C6—C5—Cl2 119.97 (19) O3—C15—H15C 109.5
C5—C6—C1 120.4 (2) H15A—C15—H15C 109.5
C5—C6—H6 119.8 H15B—C15—H15C 109.5
C1—C6—H6 119.8 O4—C16—H16A 109.5
N1—C7—C1 118.4 (2) O4—C16—H16B 109.5
N1—C7—H7 120.8 H16A—C16—H16B 109.5
C1—C7—H7 120.8 O4—C16—H16C 109.5
O2—C8—N2 120.4 (2) H16A—C16—H16C 109.5
O2—C8—C9 122.0 (2) H16B—C16—H16C 109.5
N2—C8—C9 117.7 (2)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N2—H2···O4i 0.899 (10) 1.997 (12) 2.881 (3) 167 (3)
O4—H4···O2 0.82 2.35 2.989 (3) 135
O4—H4···O2ii 0.82 2.34 3.023 (3) 141
O1—H1···N1 0.82 1.84 2.557 (3) 145

Symmetry codes: (i) −x, −y+1, −z+1; (ii) −x+1, −y+1, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CI2593).

References

  1. Bhandari, S. V., Bothara, K. G., Raut, M. K., Patil, A. A., Sarkate, A. P. & Mokale, V. J. (2008). Bioorg. Med. Chem.16, 1822–1831. [DOI] [PubMed]
  2. Bruker (2002). SAINT and SMART Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Herrick, R. S., Ziegler, C. J., Precopio, M., Crandall, K., Shaw, J. & Jarret, R. M. (2008). J. Organomet. Chem.693, 619–624.
  4. Liu, H.-B., Wang, M., Wang, Y. & Gu, Q. (2007). Synth. Commun.37, 3815–3826.
  5. Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  6. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  7. Sinha, D., Tiwari, A. K., Singh, S., Shukla, G., Mishra, P., Chandra, H. & Mishra, A. K. (2008). Eur. J. Med. Chem.43, 160–165. [DOI] [PubMed]
  8. Sun, X.-H., Tao, Y., Liu, Y.-F., Jia, Y.-Q., Chen, B. & Yang, J.-W. (2008). Chin. J. Org. Chem.28, 155–159.
  9. Suresh, P., Srimurugan, S. & Pati, H. N. (2007). Chem. Lett.36, 1332–1333.
  10. Tang, C.-B. (2008a). Acta Cryst. E64, o767. [DOI] [PMC free article] [PubMed]
  11. Tang, C.-B. (2008b). Acta Cryst. E64, o768. [DOI] [PMC free article] [PubMed]
  12. Wang, Y.-Z., Wang, M.-D., Diao, Y.-P. & Cai, Q. (2008). Acta Cryst. E64, o668. [DOI] [PMC free article] [PubMed]
  13. Yang, M.-H. & Zheng, Y.-F. (2007). Acta Cryst. E63, o4732.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S160053680801235X/ci2593sup1.cif

e-64-0o948-sup1.cif (17.5KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S160053680801235X/ci2593Isup2.hkl

e-64-0o948-Isup2.hkl (169.3KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES