Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2008 Apr 26;64(Pt 5):o922. doi: 10.1107/S1600536808011069

N,N′-Bis(4-chloro­phen­yl)urea

Kong Mun Lo a, Seik Weng Ng a,*
PMCID: PMC2961192  PMID: 21202403

Abstract

The carbonyl unit of the title compound, C13H10Cl2N2O, lies on a twofold rotation axis. The ring is aligned at 51.6 (1)° with respect to the N—C(=O)—N fragment. The two –NH– fragments of one mol­ecule form hydrogen bonds [2.845 (2) Å] to the C=O fragment of an adjacent mol­ecule, giving rise to the formation of a linear hydrogen-bonded chain.

Related literature

For isostructural N,N′-bis­(4-bromo­phen­yl)urea, see: Lin et al. (2004). N,N′-Bis-(4-chloro­phen­yl)urea has been isolated as a co-crystal with a phthalazinium chloride; see: Wamhoff et al. (1994). For the self-condensation of 4-chloro­phenyl isocyanate to yield the title symmetrical urea, see: Fu et al. (2007); Jimenez Blanco et al. (1999).graphic file with name e-64-0o922-scheme1.jpg

Experimental

Crystal data

  • C13H10Cl2N2O

  • M r = 281.13

  • Monoclinic, Inline graphic

  • a = 27.093 (3) Å

  • b = 4.5768 (5) Å

  • c = 9.901 (1) Å

  • β = 96.389 (2)°

  • V = 1220.1 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.52 mm−1

  • T = 100 (2) K

  • 0.20 × 0.20 × 0.10 mm

Data collection

  • Bruker SMART APEX diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996) T min = 0.862, T max = 0.950

  • 3703 measured reflections

  • 1386 independent reflections

  • 1210 reflections with I > 2σ(I)

  • R int = 0.020

Refinement

  • R[F 2 > 2σ(F 2)] = 0.031

  • wR(F 2) = 0.096

  • S = 1.11

  • 1386 reflections

  • 87 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.31 e Å−3

  • Δρmin = −0.29 e Å−3

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2008).

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808011069/tk2256sup1.cif

e-64-0o922-sup1.cif (12.8KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808011069/tk2256Isup2.hkl

e-64-0o922-Isup2.hkl (68.5KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O1i 0.87 (1) 2.05 (1) 2.845 (2) 152 (2)

Symmetry code: (i) Inline graphic.

Acknowledgments

We thank the University of Malaya for funding this study (SF022155/2007 A) and also for the purchase of the diffractometer.

supplementary crystallographic information

Comment

The title compound, a symmetrical urea derivative, was the unexpected product from the reaction of 4-chlorophenyl isocyanate with p-tolylsulfonic acid in ethanol. The carbonyl unit of (Cl-4-C6H4)NH–C(=O)–NH(C6H4-4-Cl) lies on a twofold rotation axis, Fig. 1, that relates one aromatic ring to the other. The ring is aligned at 51.6 (1) ° with respect to the N–C(=O)–N fragment. The two –NH– fragments of one molecule forms hydrogen bonds to the C=O fragment of an adjacent molecule, giving rise to the formation of a linear hydrogen-bonded chain (Table 1). The compound has previously been synthesized from the self-condensation of 4-chlorophenyl isocyanate in acetone (Fu et al., 2007) and in water catalyzed by pyridine (Jimenez Blanco et al., 1999).

Experimental

4-Chlorophenyl isocyanate (1.0 g, 6.5 mmol) and p-toluenesulfonic acid (1.2 g, 6.5 mmol) were heated in ethanol (100 ml) for 1 h. The solution was filtered; evaporation of the solvent gave plates of the symmetrical urea.

Refinement

Carbon-bound H-atoms were placed in calculated positions (C—H 0.95 Å) and were included in the refinement in the riding model approximation, with U(H) set to 1.2Ueq(C).

The amino H-atom was located in a difference Fourier map, and was refined with a distance restraint of N–H 0.88±0.01 Å; its temperature factor was freely refined.

Figures

Fig. 1.

Fig. 1.

The molecular structure of (I) showing the atom-numbering scheme and 70% probability displacement ellipsoids. Hydrogen atoms are drawn as spheres of arbitrary radius. The unlablled atoms related by a 2-fold axis of symmetry.

Crystal data

C13H10Cl2N2O F000 = 576
Mr = 281.13 Dx = 1.530 Mg m3
Monoclinic, C2/c Mo Kα radiation λ = 0.71073 Å
Hall symbol: -C 2yc Cell parameters from 1510 reflections
a = 27.093 (3) Å θ = 3.0–28.2º
b = 4.5768 (5) Å µ = 0.52 mm1
c = 9.901 (1) Å T = 100 (2) K
β = 96.389 (2)º Block, colorless
V = 1220.1 (2) Å3 0.20 × 0.20 × 0.10 mm
Z = 4

Data collection

Bruker SMART APEXII diffractometer 1386 independent reflections
Radiation source: fine-focus sealed tube 1210 reflections with I > 2σ(I)
Monochromator: graphite Rint = 0.020
T = 100(2) K θmax = 27.5º
ω scans θmin = 1.5º
Absorption correction: multi-scan(SADABS; Sheldrick, 1996) h = −34→27
Tmin = 0.862, Tmax = 0.950 k = −5→5
3703 measured reflections l = −10→12

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.031 H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.096   w = 1/[σ2(Fo2) + (0.0445P)2 + 1.607P] where P = (Fo2 + 2Fc2)/3
S = 1.11 (Δ/σ)max < 0.001
1386 reflections Δρmax = 0.31 e Å3
87 parameters Δρmin = −0.29 e Å3
1 restraint Extinction correction: none
Primary atom site location: structure-invariant direct methods

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Cl1 0.293344 (15) 0.99597 (10) 0.33207 (4) 0.02417 (17)
O1 0.5000 0.9101 (4) 0.7500 0.0163 (4)
N1 0.46380 (5) 0.4789 (3) 0.67795 (15) 0.0149 (3)
H1 0.4640 (8) 0.292 (2) 0.691 (2) 0.024 (5)*
C1 0.5000 0.6399 (5) 0.7500 0.0130 (4)
C2 0.42311 (6) 0.6073 (3) 0.59591 (15) 0.0131 (3)
C3 0.43093 (6) 0.8150 (4) 0.49760 (16) 0.0152 (3)
H3 0.4638 0.8730 0.4854 0.018*
C4 0.39102 (6) 0.9373 (4) 0.41754 (17) 0.0175 (4)
H4 0.3963 1.0823 0.3520 0.021*
C5 0.34334 (6) 0.8455 (4) 0.43438 (16) 0.0162 (3)
C6 0.33491 (6) 0.6357 (4) 0.52957 (17) 0.0183 (4)
H6 0.3021 0.5729 0.5391 0.022*
C7 0.37498 (6) 0.5180 (4) 0.61096 (17) 0.0176 (4)
H7 0.3695 0.3754 0.6774 0.021*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Cl1 0.0159 (2) 0.0299 (3) 0.0249 (3) 0.00200 (17) −0.00584 (17) 0.00510 (17)
O1 0.0173 (8) 0.0094 (8) 0.0207 (8) 0.000 −0.0037 (6) 0.000
N1 0.0146 (7) 0.0082 (6) 0.0208 (7) −0.0002 (5) −0.0028 (6) 0.0007 (5)
C1 0.0128 (10) 0.0123 (11) 0.0141 (10) 0.000 0.0025 (8) 0.000
C2 0.0141 (7) 0.0104 (7) 0.0142 (7) 0.0001 (6) −0.0006 (6) −0.0027 (6)
C3 0.0124 (7) 0.0162 (8) 0.0167 (8) −0.0028 (6) 0.0004 (6) −0.0013 (6)
C4 0.0184 (8) 0.0178 (8) 0.0159 (8) −0.0013 (6) −0.0001 (6) 0.0016 (6)
C5 0.0138 (8) 0.0189 (8) 0.0152 (8) 0.0018 (6) −0.0023 (6) −0.0017 (6)
C6 0.0118 (8) 0.0233 (9) 0.0199 (8) −0.0016 (6) 0.0024 (6) −0.0009 (7)
C7 0.0176 (8) 0.0174 (8) 0.0178 (8) −0.0019 (6) 0.0026 (6) 0.0026 (6)

Geometric parameters (Å, °)

Cl1—C5 1.741 (2) C3—C4 1.386 (2)
O1—C1 1.237 (3) C3—H3 0.9500
N1—C1 1.363 (2) C4—C5 1.386 (2)
N1—C2 1.422 (2) C4—H4 0.9500
N1—H1 0.87 (1) C5—C6 1.382 (2)
C1—N1i 1.363 (2) C6—C7 1.387 (2)
C2—C7 1.390 (2) C6—H6 0.9500
C2—C3 1.393 (2) C7—H7 0.9500
C1—N1—C2 122.9 (1) C5—C4—C3 119.2 (2)
C1—N1—H1 118 (1) C5—C4—H4 120.4
C2—N1—H1 119 (1) C3—C4—H4 120.4
O1—C1—N1 122.7 (1) C4—C5—C6 121.3 (2)
O1—C1—N1i 122.7 (1) C4—C5—Cl1 119.0 (1)
N1—C1—N1i 114.6 (2) C6—C5—Cl1 119.65 (13)
C7—C2—C3 119.5 (2) C7—C6—C5 119.21 (15)
C7—C2—N1 119.6 (1) C7—C6—H6 120.4
C3—C2—N1 120.8 (1) C5—C6—H6 120.4
C4—C3—C2 120.4 (2) C6—C7—C2 120.42 (15)
C4—C3—H3 119.8 C6—C7—H7 119.8
C2—C3—H3 119.8 C2—C7—H7 119.8
C2—N1—C1—O1 0.4 (2) C3—C4—C5—C6 0.3 (3)
C2—N1—C1—N1i −179.6 (2) C3—C4—C5—Cl1 −179.1 (1)
C1—N1—C2—C7 −129.4 (2) C4—C5—C6—C7 0.9 (3)
C1—N1—C2—C3 52.6 (2) Cl1—C5—C6—C7 −179.8 (1)
C7—C2—C3—C4 1.6 (2) C5—C6—C7—C2 −0.8 (3)
N1—C2—C3—C4 179.6 (2) C3—C2—C7—C6 −0.5 (2)
C2—C3—C4—C5 −1.5 (2) N1—C2—C7—C6 −178.5 (2)

Symmetry codes: (i) −x+1, y, −z+3/2.

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N1—H1···O1ii 0.87 (1) 2.05 (1) 2.845 (2) 152 (2)

Symmetry codes: (ii) x, y−1, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: TK2256).

References

  1. Barbour, L. J. (2001). J. Supramol. Chem.1, 189–191.
  2. Bruker (2007). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Fu, J.-L., Wang, Z. & Zhu, H. (2007). Huaxue Shiji, 29, 187–188.
  4. Jimenez Blanco, J. L., Saitz Barria, C., Benito, J. M., Ortiz Mellet, C., Fuentes, J., Santoyo-Gonzalez, F. & Garcia Fernandez, J. (1999). Synthesis, pp. 1907–1914.
  5. Lin, Q., Zhang, Y.-M., Wei, T.-B. & Wang, H. (2004). Acta Cryst. E60, o696–o698.
  6. Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  7. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  8. Wamhoff, H., Bamberg, C., Hermann, S. & Nieger, M. (1994). J. Org. Chem.59, 3985–3993.
  9. Westrip, S. P. (2008). publCIF In preparation.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808011069/tk2256sup1.cif

e-64-0o922-sup1.cif (12.8KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808011069/tk2256Isup2.hkl

e-64-0o922-Isup2.hkl (68.5KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES