Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2008 Jul 19;64(Pt 8):o1523–o1524. doi: 10.1107/S1600536808021594

5-Hydr­oxy-8-nitro-1,4-naphthoquinone

Daniel Teoh-Chuan Tan a, Hasnah Osman a,, Azlina Harun Kamaruddin b, Reza Kia c, Hoong-Kun Fun c,*
PMCID: PMC2962149  PMID: 21203231

Abstract

The title compound, C10H5NO5, features an intra­molecular O—H⋯O hydrogen bond, forming a six-membered ring with an S(6) ring motif. The nitro group makes a dihedral angle of 71.66 (5)° with the plane of the benzene ring to which it is bound. The two rings are almost coplanar, with a dihedral angle of 4.44 (5)°. Short inter­molecular distances between the centroids of the six-membered rings [3.7188 (6)–3.8299 (6) Å] indicate the existence of π–π inter­actions. The inter­esting features of the crystal structure are the short inter­molecular O⋯O and O⋯N inter­actions. The crystal packing is stabilized by intra­molecular O—H⋯O and inter­molecular C—H⋯O (×3) hydrogen bonds, and C—H⋯π inter­actions.

Related literature

For related literature on hydrogen-bond motifs, see Bernstein et al. (1995). For values of bond lengths, see Allen et al. (1987). For related literature, see, for example: Guingant & Barreto (1987); Larsen et al. (1996); Krohn et al. (2004); Krohn et al. (2004); Cui et al. (2006); Anuradha et al. (2006).graphic file with name e-64-o1523-scheme1.jpg

Experimental

Crystal data

  • C10H5NO5

  • M r = 219.15

  • Monoclinic, Inline graphic

  • a = 8.6809 (2) Å

  • b = 8.4250 (2) Å

  • c = 12.1845 (3) Å

  • β = 93.946 (1)°

  • V = 889.02 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.14 mm−1

  • T = 100.0 (1) K

  • 0.35 × 0.14 × 0.13 mm

Data collection

  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005) T min = 0.900, T max = 0.982

  • 22792 measured reflections

  • 3028 independent reflections

  • 2493 reflections with I > 2σ(I)

  • R int = 0.041

Refinement

  • R[F 2 > 2σ(F 2)] = 0.041

  • wR(F 2) = 0.119

  • S = 1.11

  • 3028 reflections

  • 165 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.50 e Å−3

  • Δρmin = −0.23 e Å−3

Data collection: APEX2 (Bruker, 2005); cell refinement: APEX2; data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2003).

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808021594/at2591sup1.cif

e-64-o1523-sup1.cif (16.9KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808021594/at2591Isup2.hkl

e-64-o1523-Isup2.hkl (148.6KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Selected interatomic and centroid–centroid distances (Å).

Cg1 and Cg2 are the centroids of the C1–C5/C10 and C5–C10 rings, respectively.

Cg1⋯Cg2i 3.7188 (6)
Cg1⋯Cg2i 3.8299 (6)
O2⋯O5i 2.9940 (11)
O5⋯O5ii 3.0367 (11)
O5⋯N1ii 3.0608 (11)

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Table 2. Hydrogen-bond geometry (Å, °).

Cg1 is the centroid of the C1–C5/C10 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1O1⋯O2 0.889 (18) 1.769 (19) 2.5695 (10) 148.5 (16)
C2—H2⋯O3iii 0.969 (15) 2.547 (16) 3.1853 (12) 123.4 (12)
C3—H3⋯O5ii 0.970 (15) 2.577 (15) 3.3827 (13) 140.6 (11)
C7—H7⋯O1iv 0.982 (16) 2.561 (16) 3.1851 (13) 121.4 (12)
C8—H8⋯Cg1v 0.950 (15) 2.976 (14) 3.6548 (11) 129.5 (11)

Symmetry codes: (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic; (v) Inline graphic.

Acknowledgments

HO thanks the Malaysian government for the FRGS fund (grant No. 203/PKIMIA/671026). DTCT thanks Universiti Sains Malaysia for financial support. HKF and RK thank the Malaysian government and Universiti Sains Malaysia for the Science Fund grant No. 305/PFIZIK/613312. RK thanks Universiti Sains Malaysia for a post-doctoral research fellowship.

supplementary crystallographic information

Comment

5-Hydroxy-1,4-naphthoquinone (juglone) and its 5-acetoxy-2-bromo analogue is the essential dienophile in the highly convergent and regiospecific Diels-Alder synthesis of ochromycinone (Guingant & Barreto, 1987; Larsen et al., 1996; Krohn et al., 2004) a type of natural anthraquinone which exhibits remarkable antibiotic and antitumour activities (Krohn et al., 2004; Cui et al., 2006). Our aim is to prepare aromatic ring substituted juglone analogues for the purpose of synthesizing new ochromycinone analogues. The title compound was prepared by the direct nitration of juglone with nickel(II) nitrate. The method outlined previously (Anuradha et al., 2006) predicted a ortho-nitro product. However the product that we obtained is a para-nitro product.

Compound (I), ( Fig. 1), features an intramolecular O—H···O hydrogen bond to form a six-membered ring, producing a S(6) ring motif (Bernstein et al., 1995). The bond lenghts and angles are within the normal ranges (Allen et al., 1987). The two phenyl rings are almost coplanar with the dihedral angle of 4.44 (5)°. The nitro group is not coplanar with the benzene ring and its orientation is indicated by the dihedral angle of 71.66 (5)° with the plane of the benzene ring to which it is bound. The short intermolecular distances between the centroids of six-membered rings [3.7188 (6) - 3.8299 (6) Å] prove existence of π–π interactions (Table 1). The interesting feature of the crystal structure is the short intermolecular O···O and O···N interactions (Table 1). The crystal packing,(Fig. 2), of the compound shows one-dimensional infinite chains along the b axis.The crystal packing is stabilized by the intramolecular O—H···O, intermolecular C—H···O hydrogen bonds, π–π, and C—H···π interactions.

Experimental

8-Nitro-5-hydroxy-1,4-naphthoquinone was prepared from 5-hydroxy-1,4-naphthoquinone by the protocol outlined by (Anuradha et al., 2006). Single crystals of 8-nitro-5-hydroxy-1,4-naphthoquinone was obtained by slow evaporation of a chloroform solution at 286 K° C.

Refinement

All of the H-atoms were located from the difference Fourier map and refined freely.

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound, showing 50% probability displacement ellipsoids and the atomic numbering. Intramolecular hydrogen bond is drawn as a dashed line.

Fig. 2.

Fig. 2.

The crystal packing of (I) shows a one-dimensional infinite chain along the [010] direction when viewed down the a-axis. Intramolecular and intermolecular interactions are drawn as dashed lines.

Crystal data

C10H5NO5 F000 = 448
Mr = 219.15 Dx = 1.637 Mg m3
Monoclinic, P21/n Mo Kα radiation λ = 0.71073 Å
Hall symbol: -P 2yn Cell parameters from 5257 reflections
a = 8.6809 (2) Å θ = 2.8–31.8º
b = 8.4250 (2) Å µ = 0.14 mm1
c = 12.1845 (3) Å T = 100.0 (1) K
β = 93.9460 (10)º Block, brown
V = 889.02 (4) Å3 0.35 × 0.14 × 0.13 mm
Z = 4

Data collection

Bruker SMART APEXII CCD area-detector diffractometer 3028 independent reflections
Radiation source: fine-focus sealed tube 2493 reflections with I > 2σ(I)
Monochromator: graphite Rint = 0.041
T = 100.0(1) K θmax = 31.8º
φ and ω scans θmin = 2.8º
Absorption correction: multi-scan(SADABS; Bruker, 2005) h = −12→12
Tmin = 0.901, Tmax = 0.982 k = −12→12
22792 measured reflections l = −18→17

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.041 H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.119   w = 1/[σ2(Fo2) + (0.0671P)2 + 0.1177P] where P = (Fo2 + 2Fc2)/3
S = 1.11 (Δ/σ)max = 0.001
3028 reflections Δρmax = 0.50 e Å3
165 parameters Δρmin = −0.22 e Å3
Primary atom site location: structure-invariant direct methods Extinction correction: none

Special details

Experimental. The low-temperature data was collected with the Oxford Cyrosystem Cobra low-temperature attachment.
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 0.60929 (9) 0.14448 (9) 0.47684 (6) 0.01684 (17)
O2 0.70729 (9) 0.29533 (9) 0.65117 (6) 0.01718 (17)
O3 1.13635 (9) −0.14728 (9) 0.74975 (6) 0.01826 (17)
O4 0.97394 (10) −0.42986 (9) 0.67891 (6) 0.02146 (19)
O5 1.11804 (9) −0.37894 (9) 0.54429 (6) 0.01912 (18)
N1 1.01058 (10) −0.34927 (10) 0.60140 (7) 0.01427 (18)
C1 0.71200 (11) 0.03181 (12) 0.50785 (8) 0.01280 (18)
C2 0.71889 (11) −0.10405 (12) 0.44177 (8) 0.01457 (19)
C3 0.81830 (11) −0.22605 (12) 0.47321 (8) 0.01431 (19)
C4 0.91370 (11) −0.21081 (11) 0.56968 (8) 0.01219 (18)
C5 0.91680 (11) −0.07504 (11) 0.63367 (7) 0.01156 (18)
C6 1.03288 (11) −0.05166 (12) 0.72840 (8) 0.01326 (19)
C7 1.02414 (12) 0.09636 (13) 0.79222 (8) 0.0172 (2)
C8 0.91880 (12) 0.20847 (12) 0.76649 (8) 0.0168 (2)
C9 0.80517 (11) 0.19086 (12) 0.67159 (8) 0.01387 (19)
C10 0.81225 (11) 0.04769 (11) 0.60319 (8) 0.01189 (18)
H8 0.9139 (16) 0.3051 (18) 0.8063 (12) 0.022 (4)*
H2 0.6513 (17) −0.1106 (19) 0.3752 (12) 0.025 (4)*
H3 0.8222 (16) −0.3231 (18) 0.4307 (12) 0.020 (3)*
H7 1.1034 (18) 0.1097 (19) 0.8530 (13) 0.029 (4)*
H1O1 0.620 (2) 0.223 (2) 0.5255 (16) 0.049 (5)*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0161 (3) 0.0151 (4) 0.0187 (4) 0.0031 (3) −0.0031 (3) 0.0017 (3)
O2 0.0197 (4) 0.0144 (4) 0.0176 (3) 0.0040 (3) 0.0029 (3) 0.0005 (3)
O3 0.0190 (4) 0.0170 (4) 0.0179 (3) 0.0025 (3) −0.0051 (3) 0.0005 (3)
O4 0.0285 (4) 0.0150 (4) 0.0210 (4) 0.0010 (3) 0.0023 (3) 0.0054 (3)
O5 0.0161 (3) 0.0181 (4) 0.0234 (4) 0.0026 (3) 0.0032 (3) −0.0025 (3)
N1 0.0159 (4) 0.0110 (4) 0.0155 (4) −0.0001 (3) −0.0015 (3) −0.0010 (3)
C1 0.0114 (4) 0.0132 (4) 0.0136 (4) 0.0000 (3) −0.0003 (3) 0.0021 (3)
C2 0.0142 (4) 0.0156 (5) 0.0135 (4) −0.0011 (3) −0.0018 (3) −0.0004 (3)
C3 0.0152 (4) 0.0138 (4) 0.0138 (4) −0.0011 (3) 0.0000 (3) −0.0021 (3)
C4 0.0122 (4) 0.0110 (4) 0.0133 (4) 0.0007 (3) 0.0005 (3) 0.0008 (3)
C5 0.0120 (4) 0.0112 (4) 0.0114 (4) −0.0010 (3) 0.0002 (3) −0.0001 (3)
C6 0.0143 (4) 0.0130 (4) 0.0122 (4) −0.0011 (3) −0.0012 (3) 0.0005 (3)
C7 0.0203 (5) 0.0157 (5) 0.0150 (4) −0.0008 (4) −0.0030 (3) −0.0026 (4)
C8 0.0204 (5) 0.0144 (5) 0.0153 (4) −0.0006 (4) −0.0005 (3) −0.0035 (3)
C9 0.0155 (4) 0.0123 (4) 0.0141 (4) −0.0002 (3) 0.0031 (3) 0.0002 (3)
C10 0.0123 (4) 0.0110 (4) 0.0124 (4) 0.0001 (3) 0.0011 (3) 0.0004 (3)

Geometric parameters (Å, °)

O1—C1 1.3388 (11) C3—C4 1.3964 (13)
O1—H1O1 0.89 (2) C3—H3 0.970 (15)
O2—C9 1.2367 (12) C4—C5 1.3836 (13)
O3—C6 1.2211 (12) C5—C10 1.4087 (13)
O4—N1 1.2229 (11) C5—C6 1.4921 (13)
O5—N1 1.2274 (11) C6—C7 1.4744 (14)
N1—C4 1.4741 (12) C7—C8 1.3369 (15)
C1—C2 1.4031 (14) C7—H7 0.982 (16)
C1—C10 1.4091 (13) C8—C9 1.4748 (14)
C2—C3 1.3793 (14) C8—H8 0.950 (15)
C2—H2 0.969 (15) C9—C10 1.4699 (13)
Cg1···Cg2i 3.7188 (6) O5···O5ii 3.0367 (11)
Cg1···Cg2i 3.8299 (6) O5···N1ii 3.0608 (11)
O2···O5i 2.9940 (11)
C1—O1—H1O1 107.7 (12) C4—C5—C6 122.07 (8)
O4—N1—O5 124.96 (9) C10—C5—C6 119.72 (8)
O4—N1—C4 117.90 (8) O3—C6—C7 120.63 (9)
O5—N1—C4 117.04 (8) O3—C6—C5 121.69 (9)
O1—C1—C2 118.06 (8) C7—C6—C5 117.58 (8)
O1—C1—C10 121.79 (9) C8—C7—C6 122.22 (9)
C2—C1—C10 120.15 (9) C8—C7—H7 121.9 (10)
C3—C2—C1 119.94 (9) C6—C7—H7 115.8 (9)
C3—C2—H2 121.4 (9) C7—C8—C9 121.51 (9)
C1—C2—H2 118.6 (9) C7—C8—H8 122.7 (9)
C2—C3—C4 119.26 (9) C9—C8—H8 115.8 (9)
C2—C3—H3 121.6 (9) O2—C9—C10 121.66 (9)
C4—C3—H3 119.1 (9) O2—C9—C8 119.96 (9)
C5—C4—C3 122.53 (9) C10—C9—C8 118.38 (9)
C5—C4—N1 121.19 (8) C5—C10—C1 119.86 (9)
C3—C4—N1 116.27 (8) C5—C10—C9 120.27 (8)
C4—C5—C10 118.10 (8) C1—C10—C9 119.86 (9)
O1—C1—C2—C3 −177.19 (9) O3—C6—C7—C8 175.40 (10)
C10—C1—C2—C3 3.41 (15) C5—C6—C7—C8 −1.17 (15)
C1—C2—C3—C4 −1.45 (15) C6—C7—C8—C9 −0.45 (16)
C2—C3—C4—C5 −2.37 (15) C7—C8—C9—O2 178.62 (10)
C2—C3—C4—N1 176.71 (9) C7—C8—C9—C10 −1.51 (15)
O4—N1—C4—C5 72.88 (12) C4—C5—C10—C1 −2.00 (14)
O5—N1—C4—C5 −110.47 (10) C6—C5—C10—C1 174.21 (8)
O4—N1—C4—C3 −106.21 (10) C4—C5—C10—C9 176.79 (8)
O5—N1—C4—C3 70.44 (11) C6—C5—C10—C9 −7.00 (14)
C3—C4—C5—C10 4.07 (14) O1—C1—C10—C5 178.97 (9)
N1—C4—C5—C10 −174.97 (8) C2—C1—C10—C5 −1.65 (14)
C3—C4—C5—C6 −172.05 (9) O1—C1—C10—C9 0.17 (14)
N1—C4—C5—C6 8.92 (14) C2—C1—C10—C9 179.56 (9)
C4—C5—C6—O3 4.45 (15) O2—C9—C10—C5 −174.82 (9)
C10—C5—C6—O3 −171.60 (9) C8—C9—C10—C5 5.31 (14)
C4—C5—C6—C7 −179.01 (9) O2—C9—C10—C1 3.97 (15)
C10—C5—C6—C7 4.94 (13) C8—C9—C10—C1 −175.90 (9)

Symmetry codes: (i) −x+2, −y, −z+1; (ii) −x+2, −y−1, −z+1.

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
O1—H1O1···O2 0.889 (18) 1.769 (19) 2.5695 (10) 148.5 (16)
C2—H2···O3iii 0.969 (15) 2.547 (16) 3.1853 (12) 123.4 (12)
C3—H3···O5ii 0.970 (15) 2.577 (15) 3.3827 (13) 140.6 (11)
C7—H7···O1iv 0.982 (16) 2.561 (16) 3.1851 (13) 121.4 (12)
C8—H8···Cg1v 0.950 (15) 2.976 (14) 3.6548 (11) 129.5 (11)

Symmetry codes: (iii) x−1/2, −y−1/2, z−1/2; (ii) −x+2, −y−1, −z+1; (iv) x+1/2, −y+1/2, z+1/2; (v) −x+3/2, y+1/2, −z+3/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: AT2591).

References

  1. Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–S19.
  2. Anuradha, V., Srinivas, P. V., Aparna, P. & Rao, J. M. (2006). Tetrahedron Lett.47, 4933–4935.
  3. Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl.34, 1555–1573.
  4. Bruker (2005). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  5. Cui, J. R., Jian, Y. J., Wu, Y. K. & Wang, S. M. (2006). Chin. J. Chem.24, 1163–1169.
  6. Guingant, A. & Barreto, M. M. (1987). Tetrahedron Lett.28, 3107–3110.
  7. Krohn, K., Sohrab, M. H. & Flörke, U. (2004). Tetrahedron Asymmetry15, 713–718.
  8. Larsen, D. S., O’Shea, M. D. & Brooker, S. (1996). Chem. Commun. pp. 203–204.
  9. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  10. Spek, A. L. (2003). J. Appl. Cryst.36, 7–13.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808021594/at2591sup1.cif

e-64-o1523-sup1.cif (16.9KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808021594/at2591Isup2.hkl

e-64-o1523-Isup2.hkl (148.6KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES