Skip to main content
Virologica Sinica logoLink to Virologica Sinica
. 2010 Jul 28;25(4):227–245. doi: 10.1007/s12250-010-3134-0

Hepatitis C virus experimental model systems and antiviral drug research

Susan L Uprichard 1,
PMCID: PMC2963037  NIHMSID: NIHMS240119  PMID: 20960298

Abstract

An estimated 130 million people worldwide are chronically infected with hepatitis C virus (HCV) making it a leading cause of liver disease worldwide. Because the currently available therapy of pegylated interferon-alpha and ribavirin is only effective in a subset of patients, the development of new HCV antivirals is a healthcare imperative. This review discusses the experimental models available for HCV antiviral drug research, recent advances in HCV antiviral drug development, as well as active research being pursued to facilitate development of new HCV-specific therapeutics.

Key words: Hepatitis C virus, Chronic liver disease, Experimental model systems, High throughput screening, Drug targets

Footnotes

Foundation items: The author was supported by National Institutes of Health grants AI070827 and CA33266, American Cancer Society grant RSG-09-076-01 and the UIC Walter Payton Center GUILD.

References

  • 1.Abe K., Kurata T., Teramoto Y. C. Lack of susceptibility of various primates and woodchucks to hepatitis C virus. J Med Primatol. 1993;22(7–8):433–434. [PubMed] [Google Scholar]
  • 2.Afdhal N. H. The natural history of hepatitis C. Semin Liver Dis. 2004;24(Suppl2):3–8. doi: 10.1055/s-2004-832922. [DOI] [PubMed] [Google Scholar]
  • 3.Ahmed A., Keeffe E. B. Treatment strategies for chronic hepatitis C: update since the 1997 National Institutes of Health Consensus Development Conference. J Gastroenterol Hepatol. 1999;14(Suppl):S12–18. doi: 10.1046/j.1440-1746.1999.01875.x. [DOI] [PubMed] [Google Scholar]
  • 4.Alter H. J., Seeff L. B. Recovery, persistence, and sequelae in hepatitis C virus infection: a perspective on long-term outcome. Semin Liver Dis. 2000;20(1):17–35. doi: 10.1055/s-2000-9505. [DOI] [PubMed] [Google Scholar]
  • 5.Alter M. J., Margolis H. S., Krawczynski K., et al. The natural history of community-acquired hepatitis C in the United States. The Sentinel Counties Chronic non-A, non-B Hepatitis Study Team. N Engl J Med. 1992;327(27):1899–1905. doi: 10.1056/NEJM199212313272702. [DOI] [PubMed] [Google Scholar]
  • 6.Aly H. H., Shimotohno K., Hijikata M. 3D cultured immortalized human hepatocytes useful to develop drugs for blood-borne HCV. Biochem Biophys Res Commun. 2009;379(2):330–334. doi: 10.1016/j.bbrc.2008.12.054. [DOI] [PubMed] [Google Scholar]
  • 7.Azuma H., Paulk N., Ranade A., et al. Robust expansion of human hepatocytes in Fah-/-/Rag2-/-/Il2rg-/-mice. Nat Biotechnol. 2007;25(8):903–910. doi: 10.1038/nbt1326. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 8.Bartenschlager R. Hepatitis C virus molecular clones: from cDNA to infectious virus particles in cell culture. Curr Opin Microbiol. 2006;9(4):416–422. doi: 10.1016/j.mib.2006.06.012. [DOI] [PubMed] [Google Scholar]
  • 9.Bartenschlager R., Lohmann V. Replication of hepatitis C virus. J Gen Virol. 2000;81(Pt7):1631–1648. doi: 10.1099/0022-1317-81-7-1631. [DOI] [PubMed] [Google Scholar]
  • 10.Bartosch B., Dubuisson J., Cosset F. L. Infectious hepatitis C virus pseudo-particles containing functional E1–E2 envelope protein complexes. J Exp Med. 2003;197(5):633–642. doi: 10.1084/jem.20021756. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 11.Bartosch B., Vitelli A., Granier C., et al. Cell entry of hepatitis C virus requires a set of co-receptors that include the CD81 tetraspanin and the SR-B1 scavenger receptor. J Biol Chem. 2003;278(43):41624–41630. doi: 10.1074/jbc.M305289200. [DOI] [PubMed] [Google Scholar]
  • 12.Beames B., Chavez D., Lanford R. E. GB virus B as a model for hepatitis C virus. Ilar J. 2001;42(2):152–160. doi: 10.1093/ilar.42.2.152. [DOI] [PubMed] [Google Scholar]
  • 13.Beard M. R., Abell G., Honda M., et al. An infectious molecular clone of a Japanese genotype 1b hepatitis C virus. Hepatology. 1999;30(1):316–324. doi: 10.1002/hep.510300137. [DOI] [PubMed] [Google Scholar]
  • 14.Behrens S. E., Grassmann C. W., Thiel H. J., et al. Characterization of an autonomous subgenomic pestivirus RNA replicon. J Virol. 1998;72(3):2364–2372. doi: 10.1128/jvi.72.3.2364-2372.1998. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 15.Benedicto I., Molina-Jimenez F., Bartosch B., et al. The tight junction-associated protein occludin is required for a postbinding step in hepatitis C virus entry and infection. J Virol. 2009;83(16):8012–8020. doi: 10.1128/JVI.00038-09. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 16.Berger K. L., Cooper J. D., Heaton N. S., et al. Roles for endocytic trafficking and phosphatidylinositol 4-kinase III alpha in hepatitis C virus replication. Proc Natl Acad Sci USA. 2009;106(18):7577–7582. doi: 10.1073/pnas.0902693106. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 17.Berger K. L., Randall G. Potential roles for cellular cofactors in hepatitis C virus replication complex formation. Commun Integr Biol. 2009;2(6):471–473. doi: 10.4161/cib.2.6.9261. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 18.Bissig K. D., Le T. T., Woods N. B., et al. Repopulation of adult and neonatal mice with human hepatocytes: a chimeric animal model. Proc Natl Acad Sci U S A. 2007;104(51):20507–20511. doi: 10.1073/pnas.0710528105. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 19.Bissig K D, Wieland S F, Tran P, et al. 2010. Human liver chimeric mice provide a model for hepatitis B and C virus infection and treatment. J Clin Invest. [DOI] [PMC free article] [PubMed]
  • 20.Blanchard E., Belouzard S., Goueslain L., et al. Hepatitis C virus entry depends on clathrin-mediated endocytosis. J Virol. 2006;80(14):6964–6972. doi: 10.1128/JVI.00024-06. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 21.Blight K. J., Kolykhalov A. A., Rice C. M. Efficient initiation of HCV RNA replication in cell culture. Science. 2000;290(5498):1972–1975. doi: 10.1126/science.290.5498.1972. [DOI] [PubMed] [Google Scholar]
  • 22.Blight K. J., McKeating J. A., Marcotrigiano J., et al. Efficient Replication of Hepatitis C Virus Genotype 1a RNAs in Cell Culture. J Virol. 2003;77(5):3181–3190. doi: 10.1128/JVI.77.5.3181-3190.2003. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 23.Bode J. G., Brenndorfer E. D., Karthe J., et al. Interplay between host cell and hepatitis C virus in regulating viral replication. Biol Chem. 2009;390(10):1013–1032. doi: 10.1515/BC.2009.118. [DOI] [PubMed] [Google Scholar]
  • 24.Boriskin Y. S., Leneva I. A., Pecheur E. I., et al. Arbidol: a broad-spectrum antiviral compound that blocks viral fusion. Curr Med Chem. 2008;15(10):997–1005. doi: 10.2174/092986708784049658. [DOI] [PubMed] [Google Scholar]
  • 25.Boriskin Y. S., Pecheur E. I., Polyak S. J. Arbidol: a broad-spectrum antiviral that inhibits acute and chronic HCV infection. Virol J. 2006;3:56. doi: 10.1186/1743-422X-3-56. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 26.Broering T. J., Garrity K. A., Boatright N. K., et al. Identification and characterization of broadly neutralizing human monoclonal antibodies directed against the E2 envelope glycoprotein of hepatitis C virus. J Virol. 2009;83(23):12473–12482. doi: 10.1128/JVI.01138-09. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 27.Buck M. Direct infection and replication of naturally occurring hepatitis C virus genotypes 1, 2, 3 and 4 in normal human hepatocyte cultures. PLoS One. 2008;3(7):e2660. doi: 10.1371/journal.pone.0002660. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 28.Buckwold V. E., Beer B. E., Donis R. O. Bovine viral diarrhea virus as a surrogate model of hepatitis C virus for the evaluation of antiviral agents. Antiviral Res. 2003;60(1):1–15. doi: 10.1016/S0166-3542(03)00174-8. [DOI] [PubMed] [Google Scholar]
  • 29.Bukh J. A critical role for the chimpanzee model in the study of hepatitis C. Hepatology. 2004;39(6):1469–1475. doi: 10.1002/hep.20268. [DOI] [PubMed] [Google Scholar]
  • 30.Bukh J., Pietschmann T., Lohmann V., et al. Mutations that permit efficient replication of hepatitis C virus RNA in Huh-7 cells prevent productive replication in chimpanzees. Proc Natl Acad Sci USA. 2002;99(22):14416–14421. doi: 10.1073/pnas.212532699. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 31.Burioni R., Perotti M., Mancini N., et al. Perspectives for the utilization of neutralizing human monoclonal antibodies as anti-HCV drugs. J Hepatol. 2008;49(2):299–300. doi: 10.1016/j.jhep.2008.05.008. [DOI] [PubMed] [Google Scholar]
  • 32.Cai Z., Cai L., Jiang J., et al. Human serum amyloid A protein inhibits hepatitis C virus entry into cells. J Virol. 2007;81(11):6128–6133. doi: 10.1128/JVI.02627-06. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 33.Chang K., Wang T., Luo G. Proteomics study of the hepatitis C virus replication complex. Methods Mol Biol. 2009;510:185–193. doi: 10.1007/978-1-59745-394-3_14. [DOI] [PubMed] [Google Scholar]
  • 34.Chang K. S., Cai Z., Zhang C., et al. Replication of hepatitis C virus (HCV) RNA in mouse embryonic fibroblasts: protein kinase R (PKR)-dependent and PKR-independent mechanisms for controlling HCV RNA replication and mediating interferon activities. J Virol. 2006;80(15):7364–7374. doi: 10.1128/JVI.00586-06. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 35.Chockalingam K., Simeon R. L., Rice C. M., et al. A cell protection screen reveals potent inhibitors of multiple stages of the hepatitis C virus life cycle. Proc Natl Acad Sci U S A. 2010;107(8):3764–3769. doi: 10.1073/pnas.0915117107. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 36.Choi S., Sainz B., Jr., Corcoran P., et al. Characterization of increased drug metabolism activity in dimethyl sulfoxide (DMSO)-treated Huh7 hepatoma cells. Xenobiotica. 2009;39(3):205–217. doi: 10.1080/00498250802613620. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 37.Choo Q.-L., Kuo G., Weiner A. J., et al. Isolation of a cDNA clone derived from a blood-borne non-A, non-B viral hepatitis genome. Science. 1989;244:359–362. doi: 10.1126/science.2523562. [DOI] [PubMed] [Google Scholar]
  • 38.Chung R., He W., Saquib A., et al. Hepatitis C virus replication is directly inhibited by IFN-alpha in a full-length binary expression system. Proc Natl Acad Sci USA. 2001;98(17):9847–9852. doi: 10.1073/pnas.171319698. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 39.Davis G. L., Nelson D. R., Terrault N., et al. A randomized, open-label study to evaluate the safety and pharmacokinetics of human hepatitis C immune globulin (Civacir) in liver transplant recipients. Liver Transpl. 2005;11(8):941–949. doi: 10.1002/lt.20405. [DOI] [PubMed] [Google Scholar]
  • 40.Durantel D. Celgosivir, an alpha-glucosidase I inhibitor for the potential treatment of HCV infection. Curr Opin Investig Drugs. 2009;10(8):860–870. [PubMed] [Google Scholar]
  • 41.Einav S., Gerber D., Bryson P. D., et al. Discovery of a hepatitis C target and its pharmacological inhibitors by microfluidic affinity analysis. Nat Biotechnol. 2008;26(9):1019–1027. doi: 10.1038/nbt.1490. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 42.Evans M. J., von Hahn T., Tscherne D. M., et al. Claudin-1 is a hepatitis C virus co-receptor required for a late step in entry. Nature. 2007;446(7137):801–805. doi: 10.1038/nature05654. [DOI] [PubMed] [Google Scholar]
  • 43.Fartoux L., Poujol-Robert A., Guechot J., et al. Insulin resistance is a cause of steatosis and fibrosis progression in chronic hepatitis C. Gut. 2005;54(7):1003–1008. doi: 10.1136/gut.2004.050302. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 44.Feinstone S., Alter H., Dienes H., et al. Non-A, non-B hepatitis in chimpanzees and marmosets. J Infect Dis. 1982;144(6):588–598. doi: 10.1093/infdis/144.6.588. [DOI] [PubMed] [Google Scholar]
  • 45.Feld J. J., Hoofnagle J. H. Mechanism of action of interferon and ribavirin in treatment of hepatitis C. Nature. 2005;436(7053):967–972. doi: 10.1038/nature04082. [DOI] [PubMed] [Google Scholar]
  • 46.Ferreon J. C., Ferreon A. C., Li K., et al. Molecular determinants of TRIF proteolysis mediated by the hepatitis C virus NS3/4A protease. J Biol Chem. 2005;280(21):20483–20492. doi: 10.1074/jbc.M500422200. [DOI] [PubMed] [Google Scholar]
  • 47.Flisiak R., Feinman S. V., Jablkowski M., et al. The cyclophilin inhibitor Debio 025 combined with PEG IFNalpha2a significantly reduces viral load in treatmentnaive hepatitis C patients. Hepatology. 2009;49(5):1460–1468. doi: 10.1002/hep.22835. [DOI] [PubMed] [Google Scholar]
  • 48.Foy E., Li K., Wang C., et al. Regulation of interferon regulatory factor-3 by the hepatitis C virus serine protease. Science. 2003;300(5622):1145–1148. doi: 10.1126/science.1082604. [DOI] [PubMed] [Google Scholar]
  • 49.Galun E., Burakova T., Ketzinel M., et al. Hepatitis C virus viremia in SCID—>BNX mouse chimera. J Infect Dis. 1995;172(1):25–30. doi: 10.1093/infdis/172.1.25. [DOI] [PubMed] [Google Scholar]
  • 50.Garry R. F., Dash S. Proteomics computational analyses suggest that hepatitis C virus E1 and pestivirus E2 envelope glycoproteins are truncated class II fusion proteins. Virology. 2003;307(2):255–265. doi: 10.1016/S0042-6822(02)00065-X. [DOI] [PubMed] [Google Scholar]
  • 51.Gastaminza P., Whitten-Bauer C., Chisari F. V. Unbiased probing of the entire hepatitis C virus life cycle identifies clinical compounds that target multiple aspects of the infection. Proc Natl Acad Sci USA. 2010;107(1):291–296. doi: 10.1073/pnas.0912966107. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 52.Glue P., Fang J. W., Rouzier-Panis R., et al. Pegylated interferon-alpha2b: pharmacokinetics, pharmacodynamics, safety, and preliminary efficacy data. Hepatitis C Intervention Therapy Group. Clin Pharmacol Ther. 2000;68(5):556–567. doi: 10.1067/mcp.2000.110973. [DOI] [PubMed] [Google Scholar]
  • 53.Goergen B., Jakobs S., Symmons P., et al. Quantitation of HCV-replication using one-step competitive reverse transcription-polymerase chain reaction and a solid phase, colorimetric detection method. J Hepatol. 1994;21(4):678–682. doi: 10.1016/S0168-8278(94)80118-5. [DOI] [PubMed] [Google Scholar]
  • 54.Gosert R., Egger D., Lohmann V., et al. Identification of the hepatitis C virus RNA replication complex in Huh-7 cells harboring subgenomic replicons. J Virol. 2003;77(9):5487–5492. doi: 10.1128/JVI.77.9.5487-5492.2003. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 55.Gottwein J. M., Scheel T. K., Hoegh A. M., et al. Robust hepatitis C genotype 3a cell culture releasing adapted intergenotypic 3a/2a (S52/JFH1) viruses. Gastroenterology. 2007;133(5):1614–1626. doi: 10.1053/j.gastro.2007.08.005. [DOI] [PubMed] [Google Scholar]
  • 56.Gottwein J. M., Scheel T. K., Jensen T. B., et al. Development and characterization of hepatitis C virus genotype 1–7 cell culture systems: role of CD81 and scavenger receptor class B type I and effect of antiviral drugs. Hepatology. 2009;49(2):364–377. doi: 10.1002/hep.22673. [DOI] [PubMed] [Google Scholar]
  • 57.Gouttenoire J., Penin F., Moradpour D. Hepatitis C virus nonstructural protein 4B: a journey into unexplored territory. Rev Med Virol. 2010;20(2):117–129. doi: 10.1002/rmv.640. [DOI] [PubMed] [Google Scholar]
  • 58.Griffin S. Inhibition of HCV p7 as a therapeutic target. Curr Opin Investig Drugs. 2010;11(2):175–181. [PubMed] [Google Scholar]
  • 59.Grompe M., Laconi E., Shafritz D. Principles of therapeutic liver repopulation. Semin Liver Dis. 1999;19(1):7–14. doi: 10.1055/s-2007-1007093. [DOI] [PubMed] [Google Scholar]
  • 60.Grove J., Huby T., Stamataki Z., et al. Scavenger receptor BI and BII expression levels modulate hepatitis C virus infectivity. J Virol. 2007;81(7):3162–3169. doi: 10.1128/JVI.02356-06. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 61.Haid S., Pietschmann T., Pecheur E. I. Low pH-dependent Hepatitis C Virus Membrane Fusion Depends on E2 Integrity, Target Lipid Composition, and Density of Virus Particles. J Biol Chem. 2009;284(26):17657–17667. doi: 10.1074/jbc.M109.014647. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 62.Heckel J. L., Sandgren E. P., Degen J. L., et al. Neonatal bleeding in transgenic mice expressing urokinasetype plasminogen activator. Cell. 1990;62(3):447–456. doi: 10.1016/0092-8674(90)90010-C. [DOI] [PubMed] [Google Scholar]
  • 63.Helle F., Dubuisson J. Hepatitis C virus entry into host cells. Cell Mol Life Sci. 2008;65(1):100–112. doi: 10.1007/s00018-007-7291-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 64.Hezode C., Forestier N., Dusheiko G., et al. Telaprevir and peginterferon with or without ribavirin for chronic HCV infection. N Engl J Med. 2009;360(18):1839–1850. doi: 10.1056/NEJMoa0807650. [DOI] [PubMed] [Google Scholar]
  • 65.Hiraga N., Imamura M., Tsuge M., et al. Infection of human hepatocyte chimeric mouse with genetically engineered hepatitis C virus and its susceptibility to interferon. FEBS Lett. 2007;581(10):1983–1987. doi: 10.1016/j.febslet.2007.04.021. [DOI] [PubMed] [Google Scholar]
  • 66.Hiramatsu N., Dash S., Gerber M. HCV cDNA transfection to HepG2 cells. J Viral Hepat. 1997;4(Suppl1):61–67. doi: 10.1111/j.1365-2893.1997.tb00162.x. [DOI] [PubMed] [Google Scholar]
  • 67.Hirowatari Y., Hijikata M., Shimotohno K. A novel method for analysis of viral proteinase activity encoded by hepatitis C virus in cultured cells. Anal Biochem. 1995;225(1):113–120. doi: 10.1006/abio.1995.1116. [DOI] [PubMed] [Google Scholar]
  • 68.Holzer M., Ziegler S., Albrecht B., et al. Identification of terfenadine as an inhibitor of human CD81-receptor HCV-E2 interaction: synthesis and structure optimization. Molecules. 2008;13(5):1081–1110. doi: 10.3390/molecules13051081. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 69.Honda A., Arai Y., Hirota N., et al. Hepatitis C virus structural proteins induce liver cell injury in transgenic mice. J Med Virol. 1999;59(3):281–289. doi: 10.1002/(SICI)1096-9071(199911)59:3<281::AID-JMV4>3.0.CO;2-S. [DOI] [PubMed] [Google Scholar]
  • 70.Hong Z., Beaudet-Miller M., Lanford R. E., et al. Generation of transmissible hepatitis C virions from a molecular clone in chimpanzees. Virology. 1999;256(1):36–44. doi: 10.1006/viro.1999.9603. [DOI] [PubMed] [Google Scholar]
  • 71.Hoofnagle J. H. Course and outcome of hepatitis C. Hepatology. 2002;36(5Suppl1):S21–29. doi: 10.1002/hep.1840360704. [DOI] [PubMed] [Google Scholar]
  • 72.Hsu M., Zhang J., Flint M., et al. Hepatitis C virus glycoproteins mediate pH-dependent cell entry of pseudotyped retroviral particles. Proc Natl Acad Sci USA. 2003;100(12):7271–7276. doi: 10.1073/pnas.0832180100. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 73.Huang Y., Staschke K., De Francesco R., et al. Phosphorylation of hepatitis C virus NS5A nonstructural protein: a new paradigm for phosphorylation-dependent viral RNA replication? Virology. 2007;364(1):1–9. doi: 10.1016/j.virol.2007.01.042. [DOI] [PubMed] [Google Scholar]
  • 74.Ikeda M., Abe K., Yamada M., et al. Different anti-HCV profiles of statins and their potential for combination therapy with interferon. Hepatology. 2006;44(1):117–125. doi: 10.1002/hep.21232. [DOI] [PubMed] [Google Scholar]
  • 75.Ikeda M., Yi M., Li K., et al. Selectable subgenomic and genome-length dicistronic RNAs derived from an infectious molecular clone of the HCV-N strain of hepatitis C virus replicate efficiently in cultured Huh7 cells. J Virol. 2002;76(6):2997–3006. doi: 10.1128/JVI.76.6.2997-3006.2002. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 76.Ilan E., Arazi J., Nussbaum O., et al. The hepatitis C virus (HCV)-Trimera mouse: a model for evaluation of agents against HCV. J Infect Dis. 2002;185(2):153–161. doi: 10.1086/338266. [DOI] [PubMed] [Google Scholar]
  • 77.Iro M., Witteveldt J., Angus A. G., et al. A reporter cell line for rapid and sensitive evaluation of hepatitis C virus infectivity and replication. Antiviral Res. 2009;83(2):148–155. doi: 10.1016/j.antiviral.2009.04.007. [DOI] [PubMed] [Google Scholar]
  • 78.Jensen T. B., Gottwein J. M., Scheel T. K., et al. Highly efficient JFH1-based cell-culture system for hepatitis C virus genotype 5a: failure of homologous neutralizing-antibody treatment to control infection. J Infect Dis. 2008;198(12):1756–1765. doi: 10.1086/593021. [DOI] [PubMed] [Google Scholar]
  • 79.Jirasko V., Montserret R., Appel N., et al. Structural and functional characterization of nonstructural protein 2 for its role in hepatitis C virus assembly. J Biol Chem. 2008;283(42):28546–28562. doi: 10.1074/jbc.M803981200. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 80.Jones C. T., Murray C.L., Eastman D. K., et al. Hepatitis C virus p7 and NS2 proteins are essential for production of infectious virus. J Virol. 2007;81(16):8374–8383. doi: 10.1128/JVI.00690-07. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 81.Jopling C. L., Yi M., Lancaster A. M., et al. Modulation of hepatitis C virus RNA abundance by a liver-specific MicroRNA. Science. 2005;309(5740):1577–1581. doi: 10.1126/science.1113329. [DOI] [PubMed] [Google Scholar]
  • 82.Kapadia S. B., Barth H., Baumert T., et al. Initiation of hepatitis C virus infection is dependent on cholesterol and cooperativity between CD81 and scavenger receptor B type I. J Virol. 2007;81(1):374–383. doi: 10.1128/JVI.01134-06. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 83.Karayiannis P., Scheuer P. J., Bamber M., et al. Experimental infection of Tamarins with human non-A, non-B hepatitis virus. JMedVirol. 1983;11:251–256. doi: 10.1002/jmv.1890110308. [DOI] [PubMed] [Google Scholar]
  • 84.Kato T., Date T., Miyamoto M., et al. Efficient replication of the genotype 2a hepatitis C virus subgenomic replicon. Gastroenterology. 2003;125(6):1808–1817. doi: 10.1053/j.gastro.2003.09.023. [DOI] [PubMed] [Google Scholar]
  • 85.Kato T., Furusaka A., Miyamoto M., et al. Sequence analysis of hepatitis C virus isolated from a fulminant hepatitis patient. J Med Virol. 2001;64(3):334–339. doi: 10.1002/jmv.1055. [DOI] [PubMed] [Google Scholar]
  • 86.Kawamura T., Furusaka A., Koziel M. J., et al. Transgenic expression of hepatitis C virus structural proteins in the mouse. Hepatology. 1997;25(4):1014–1021. doi: 10.1002/hep.510250437. [DOI] [PubMed] [Google Scholar]
  • 87.Keck Z. Y., Machida K., Lai M. M., et al. Therapeutic control of hepatitis C virus: the role of neutralizing monoclonal antibodies. Curr Top Microbiol Immunol. 2008;317:1–38. doi: 10.1007/978-3-540-72146-8_1. [DOI] [PubMed] [Google Scholar]
  • 88.Khromykh A. A., Westaway E. G. Subgenomic replicons of the flavivirus Kunjin: construction and applications. J Virol. 1997;71(2):1497–1505. doi: 10.1128/jvi.71.2.1497-1505.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 89.Kneteman N. M., Mercer D. F. Mice with chimeric human livers: who says supermodels have to be tall? Hepatology. 2005;41(4):703–706. doi: 10.1002/hep.20681. [DOI] [PubMed] [Google Scholar]
  • 90.Kneteman N. M., Toso C. In vivo study of HCV in mice with chimeric human livers. Methods Mol Biol. 2009;510:383–399. doi: 10.1007/978-1-59745-394-3_29. [DOI] [PubMed] [Google Scholar]
  • 91.Kneteman N. M., Weiner A. J., O’Connell J., et al. Anti-HCV therapies in chimeric scid-Alb/uPA mice parallel outcomes in human clinical application. Hepatology. 2006;43(6):1346–1353. doi: 10.1002/hep.21209. [DOI] [PubMed] [Google Scholar]
  • 92.Koike K., Moriya K., Ishibashi K., et al. Expression of hepatitis C virus envelope proteins in transgenic mice. JGenVirol. 1995;76:3031–3038. doi: 10.1099/0022-1317-76-12-3031. [DOI] [PubMed] [Google Scholar]
  • 93.Kolykhalov A., Mihalik K., Feinstone S., et al. Hepatitis C virus-encoded enzymatic activities and conserved RNA elements in the 3′ nontranslated region are essential for virus replication in vivo. J Virol. 2000;74(4):2046–2051. doi: 10.1128/JVI.74.4.2046-2051.2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 94.Kolykhalov A. A., Agapov E. V., Blight K. J., et al. Transmission of hepatitis C by intrahepatic inoculation with transcribed RNA. Science. 1997;277(5325):570–574. doi: 10.1126/science.277.5325.570. [DOI] [PubMed] [Google Scholar]
  • 95.Kota S, Scampavia L, Spicer T, et al. 2009. A Time-Resolved Fluorescence-Resonance Energy Transfer Assay for Identifying Inhibitors of Hepatitis C Virus Core Dimerization. Assay Drug Dev Technol. [DOI] [PMC free article] [PubMed]
  • 96.Koutsoudakis G., Herrmann E., Kallis S., et al. The level of CD81 cell surface expression is a key determinant for productive entry of hepatitis C virus into host cells. J Virol. 2007;81(2):588–598. doi: 10.1128/JVI.01534-06. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 97.Koutsoudakis G., Kaul A., Steinmann E., et al. Characterization of the early steps of hepatitis C virus infection by using luciferase reporter viruses. J Virol. 2006;80(11):5308–5320. doi: 10.1128/JVI.02460-05. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 98.Krieger N., Lohmann V., Bartenschlager R. Enhancement of hepatitis C virus RNA replication by cell culture-adaptive mutations. J Virol. 2001;75(10):4614–24. doi: 10.1128/JVI.75.10.4614-4624.2001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 99.Kwo P., Lawitz E. J., McCone J., et al. HCV SPRINT-1: Boceprevir plus Peginterferon alfa-2b/Ribavirin for Treatment of Genotype 1 Chronic Hepatitis C in Previously Untreated Patients: 59th Annual Meeting of the American Association for the Study of Liver Diseases, San Francisco, CA. Hepatology. 2008;48(Suppl1):1027A. [Google Scholar]
  • 100.Lanford R. E., Bigger C., Bassett S., et al. The chimpanzee model of hepatitis C virus infections. Ilar J. 2001;42(2):117–126. doi: 10.1093/ilar.42.2.117. [DOI] [PubMed] [Google Scholar]
  • 101.Lanford R. E., Hildebrandt-Eriksen E. S., Petri A., et al. Therapeutic silencing of microRNA-122 in primates with chronic hepatitis C virus infection. Science. 2010;327(5962):198–201. doi: 10.1126/science.1178178. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 102.Lavie M., Voisset C., Vu-Dac N., et al. Serum amyloid A has antiviral activity against hepatitis C virus by inhibiting virus entry in a cell culture system. Hepatology. 2006;44(6):1626–1634. doi: 10.1002/hep.21406. [DOI] [PubMed] [Google Scholar]
  • 103.Lavillette D., Bartosch B., Nourrisson D., et al. Hepatitis C virus glycoproteins mediate low pHdependent membrane fusion with liposomes. J Biol Chem. 2006;281(7):3909–3917. doi: 10.1074/jbc.M509747200. [DOI] [PubMed] [Google Scholar]
  • 104.Lavillette D., Pecheur E. I., Donot P., et al. Characterization of fusion determinants points to the involvement of three discrete regions of both E1 and E2 glycoproteins in the membrane fusion process of hepatitis C virus. J Virol. 2007;81(16):8752–8765. doi: 10.1128/JVI.02642-06. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 105.Law M., Maruyama T., Lewis J., et al. Broadly neutralizing antibodies protect against hepatitis C virus quasispecies challenge. Nat Med. 2008;14(1):25–27. doi: 10.1038/nm1698. [DOI] [PubMed] [Google Scholar]
  • 106.Lemm J. A., O’Boyle D., 2nd, Liu M., et al. Identification of hepatitis C virus NS5A inhibitors. J Virol. 2010;84(1):482–491. doi: 10.1128/JVI.01360-09. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 107.Lerat H., Honda M., Beard M. R., et al. Steatosis and liver cancer in transgenic mice expressing the structural and nonstructural proteins of hepatitis C virus. Gastroenterology. 2002;122(2):352–365. doi: 10.1053/gast.2002.31001. [DOI] [PubMed] [Google Scholar]
  • 108.Li K., Foy E., Ferreon J. C., et al. Immune evasion by hepatitis C virus NS3/4A protease-mediated cleavage of the Toll-like receptor 3 adaptor protein TRIF. Proc Natl Acad Sci USA. 2005;102(8):2992–2997. doi: 10.1073/pnas.0408824102. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 109.Li Q., Brass A. L., Ng A., et al. A genome-wide genetic screen for host factors required for hepatitis C virus propagation. Proc Natl Acad Sci USA. 2009;106(38):16410–16415. doi: 10.1073/pnas.0907439106. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 110.Li X. D., Sun L., Seth R. B., et al. Hepatitis C virus protease NS3/4A cleaves mitochondrial antiviral signaling protein off the mitochondria to evade innate immunity. Proc Natl Acad Sci U S A. 2005;102(49):17717–17722. doi: 10.1073/pnas.0508531102. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 111.Liang T. J., Rehermann B., Seeff L. B., et al. Pathogenesis, natural history, treatment, and prevention of hepatitis C. Ann Intern Med. 2000;132(4):296–305. doi: 10.7326/0003-4819-132-4-200002150-00008. [DOI] [PubMed] [Google Scholar]
  • 112.Lim S. P., Soo H. M., Tan Y. H., et al. Inducible system in human hepatoma cell lines for hepatitis C virus production. Virology. 2002;303(1):79–99. doi: 10.1006/viro.2002.1687. [DOI] [PubMed] [Google Scholar]
  • 113.Lindenbach B. D., Evans M. J., Syder A. J., et al. Complete replication of hepatitis C virus in cell culture. Science. 2005;309(5734):623–626. doi: 10.1126/science.1114016. [DOI] [PubMed] [Google Scholar]
  • 114.Lindenbach B D, Meuleman P, Ploss A, et al. 2006. Cell culture-grown hepatitis C virus is infectious in vivo and can be recultured in vitro. Proc Natl Acad Sci USA. [DOI] [PMC free article] [PubMed]
  • 115.Liu S., Yang W., Shen L., et al. Tight junction proteins claudin-1 and occludin control hepatitis C virus entry and are downregulated during infection to prevent superinfection. J Virol. 2009;83(4):2011–2014. doi: 10.1128/JVI.01888-08. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 116.Lohmann V., Hoffmann S., Herian U., et al. Viral and cellular determinants of hepatitis C virus RNA replication in cell culture. J Virol. 2003;77(5):3007–3019. doi: 10.1128/JVI.77.5.3007-3019.2003. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 117.Lohmann V., Korner F., Dobierzewska A., et al. Mutations in Hepatitis C Virus RNAs Conferring Cell Culture Adaptation. J Virol. 2001;75(3):1437–1449. doi: 10.1128/JVI.75.3.1437-1449.2001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 118.Lohmann V., Korner F., Koch J., et al. Replication of subgenomic hepatitis C virus RNAs in a hepatoma cell line. Science. 1999;285(5424):110–113. doi: 10.1126/science.285.5424.110. [DOI] [PubMed] [Google Scholar]
  • 119.Maeda N., Watanabe M., Okamoto S., et al. Hepatitis C virus infection in human liver tissue engrafted in mice with an infectious molecular clone. Liver Int. 2004;24(3):259–267. doi: 10.1111/j.1478-3231.2004.0909.x. [DOI] [PubMed] [Google Scholar]
  • 120.Masson D., Koseki M., Ishibashi M., et al. Increased HDL cholesterol and apoA-I in humans and mice treated with a novel SR-BI inhibitor. Arterioscler Thromb Vasc Biol. 2009;29(12):2054–2060. doi: 10.1161/ATVBAHA.109.191320. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 121.Matsumura T., Hu Z., Kato T., et al. Amphipathic DNA polymers inhibit hepatitis C virus infection by blocking viral entry. Gastroenterology. 2009;137(2):673–681. doi: 10.1053/j.gastro.2009.04.048. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 122.McHutchison J. G., Everson G. T., Gordon S. C., et al. Telaprevir with peginterferon and ribavirin for chronic HCV genotype 1 infection. N Engl J Med. 2009;360(18):1827–1838. doi: 10.1056/NEJMoa0806104. [DOI] [PubMed] [Google Scholar]
  • 123.Meertens L., Bertaux C., Dragic T. Hepatitis C virus entry requires a critical postinternalization step and delivery to early endosomes via clathrin-coated vesicles. J Virol. 2006;80(23):11571–11578. doi: 10.1128/JVI.01717-06. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 124.Mercer D., Schiller D., Elliott J., et al. Hepatitis C virus replication in mice with chimeric human livers. Nat Med. 2001;7(8):927–933. doi: 10.1038/90968. [DOI] [PubMed] [Google Scholar]
  • 125.Meunier J. C., Russell R. S., Goossens V., et al. Isolation and characterization of broadly neutralizing human monoclonal antibodies to the e1 glycoprotein of hepatitis C virus. J Virol. 2008;82(2):966–973. doi: 10.1128/JVI.01872-07. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 126.Moradpour D., Penin F., Rice C. M. Replication of hepatitis C virus. Nat Rev Microbiol. 2007;5(6):453–463. doi: 10.1038/nrmicro1645. [DOI] [PubMed] [Google Scholar]
  • 127.Moriya K., Yotsuyanagi H., Shintani Y., et al. Hepatitis C virus core protein induces hepatic steatosis in transgenic mice. J Gen Virol. 1997;78(Pt7):1527–1531. doi: 10.1099/0022-1317-78-7-1527. [DOI] [PubMed] [Google Scholar]
  • 128.Murakami Y., Noguchi K., Yamagoe S., et al. Identification of bisindolylmaleimides and indolocarbazoles as inhibitors of HCV replication by tube-capture-RT-PCR. Antiviral Res. 2009;83(2):112–117. doi: 10.1016/j.antiviral.2009.03.008. [DOI] [PubMed] [Google Scholar]
  • 129.Murray E. M., Grobler J. A., Markel E. J., et al. Persistent replication of hepatitis C virus replicons expressing the betalactamase reporter in subpopulations of highly permissive Huh7 cells. J Virol. 2003;77(5):2928–2935. doi: 10.1128/JVI.77.5.2928-2935.2003. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 130.Myung J., Khalap N., Kalkeri G., et al. Inducible model to study negative strand RNA synthesis and assembly of hepatitis C virus from a full-length cDNA clone. J Virol Methods. 2001;94(1–2):55–67. doi: 10.1016/S0166-0934(01)00278-6. [DOI] [PubMed] [Google Scholar]
  • 131.Nahmias Y., Goldwasser J., Casali M., et al. Apolipoprotein B-dependent hepatitis C virus secretion is inhibited by the grapefruit flavonoid naringenin. Hepatology. 2008;47(5):1437–1445. doi: 10.1002/hep.22197. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 132.Nakabayashi H., Taketa K., Miyano K., et al. Growth of human hepatoma cells lines with differentiated functions in chemically defined medium. Cancer Res. 1982;42(9):3858–3863. [PubMed] [Google Scholar]
  • 133.Noto H., Raskin P. Hepatitis C infection and diabetes. J Diabetes Complications. 2006;20(2):113–120. doi: 10.1016/j.jdiacomp.2006.01.001. [DOI] [PubMed] [Google Scholar]
  • 134.Paeshuyse J., Kaul A., De Clercq E., et al. The nonimmunosuppressive cyclosporin DEBIO-025 is a potent inhibitor of hepatitis C virus replication in vitro. Hepatology. 2006;43(4):761–770. doi: 10.1002/hep.21102. [DOI] [PubMed] [Google Scholar]
  • 135.Pan K. L., Lee J. C., Sung H. W., et al. Development of NS3/4A protease-based reporter assay suitable for efficiently assessing hepatitis C virus infection. Antimicrob Agents Chemother. 2009;53(11):4825–4834. doi: 10.1128/AAC.00601-09. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 136.Pasquinelli C., Shoenberger J. M., Chung J., et al. Hepatitis C virus core and E2 protein expression in transgenic mice. Hepatology. 1997;25(3):719–727. doi: 10.1002/hep.510250338. [DOI] [PubMed] [Google Scholar]
  • 137.Pecheur E. I., Lavillette D., Alcaras F., et al. Biochemical mechanism of hepatitis C virus inhibition by the broad-spectrum antiviral arbidol. Biochemistry. 2007;46(20):6050–6059. doi: 10.1021/bi700181j. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 138.Pietschmann T., Kaul A., Koutsoudakis G., et al. Construction and characterization of infectious intragenotypic and intergenotypic hepatitis C virus chimeras. Proc Natl Acad Sci USA. 2006;103(19):7408–7413. doi: 10.1073/pnas.0504877103. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 139.Pietschmann T., Zayas M., Meuleman P., et al. Production of infectious genotype 1b virus particles in cell culture and impairment by replication enhancing mutations. PLoS Pathog. 2009;5(6):e1000475. doi: 10.1371/journal.ppat.1000475. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 140.Pileri P., Uematsu Y., Campagnoli S., et al. Binding of hepatitis C virus to CD81. Science. 1998;282(5390):938–941. doi: 10.1126/science.282.5390.938. [DOI] [PubMed] [Google Scholar]
  • 141.Ploss A., Evans M. J., Gaysinskaya V. A., et al. Human occludin is a hepatitis C virus entry factor required for infection of mouse cells. Nature. 2009;457(7231):882–886. doi: 10.1038/nature07684. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 142.Ploss A., Khetani S. R., Jones C. T., et al. Persistent hepatitis C virus infection in microscale primary human hepatocyte cultures. Proc Natl Acad Sci USA. 2010;107(7):3141–3145. doi: 10.1073/pnas.0915130107. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 143.Ploss A., Rice C. M. Towards a small animal model for hepatitis C. EMBO Rep. 2009;10(11):1220–1227. doi: 10.1038/embor.2009.223. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 144.Popescu C. I., Dubuisson J. Role of lipid metabolism in hepatitis C virus assembly and entry. Biol Cell. 2009;102(1):63–74. doi: 10.1042/BC20090125. [DOI] [PubMed] [Google Scholar]
  • 145.Poynard T., Yuen M. F., Ratziu V., et al. Viral hepatitis C. Lancet. 2003;362(9401):2095–2100. doi: 10.1016/S0140-6736(03)15109-4. [DOI] [PubMed] [Google Scholar]
  • 146.Prabhu R., Joshi V., Garry R. F., et al. Interferon alpha-2b inhibits negative-strand RNA and protein expression from full-length HCV1a infectious clone. Exp Mol Pathol. 2004;76(3):242–252. doi: 10.1016/j.yexmp.2004.01.004. [DOI] [PubMed] [Google Scholar]
  • 147.Reisner Y., Dagan S. The Trimera mouse: generating human monoclonal antibodies and an animal model for human diseases. Trends Biotechnol. 1998;16(6):242–246. doi: 10.1016/S0167-7799(98)01203-7. [DOI] [PubMed] [Google Scholar]
  • 148.Romero-Gomez M. Hepatitis C and insulin resistance: steatosis, fibrosis and non-response. Rev Esp Enferm Dig. 2006;98(8):605–615. doi: 10.4321/S1130-01082006000800006. [DOI] [PubMed] [Google Scholar]
  • 149.Romero-Gomez M. Insulin resistance and hepatitis C. World J Gastroenterol. 2006;12(44):7075–7080. doi: 10.3748/wjg.v12.i44.7075. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 150.Sainz B., Jr., Barretto N., Uprichard S. L. Hepatitis C Virus infection in phenotypically distinct Huh7 cell lines. PLoS ONE. 2009;4(8):e6561. doi: 10.1371/journal.pone.0006561. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 151.Sainz B., Jr., Chisari F. V. Production of infectious hepatitis C virus by well-differentiated, growth-arrested human hepatoma-derived cells. J Virol. 2006;80(20):10253–10257. doi: 10.1128/JVI.01059-06. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 152.Sainz B., Jr., TenCate V., Uprichard S. L. Three-dimensional Huh7 cell culture system for the study of Hepatitis C virus infection. Virol J. 2009;6:103. doi: 10.1186/1743-422X-6-103. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 153.Sarrazin C., Rouzier R., Wagner F., et al. SCH 503034, a novel hepatitis C virus protease inhibitor, plus pegylated interferon alpha-2b for genotype 1 nonresponders. Gastroenterology. 2007;132(4):1270–1278. doi: 10.1053/j.gastro.2007.01.041. [DOI] [PubMed] [Google Scholar]
  • 154.Scarselli E., Ansuini H., Cerino R., et al. The human scavenger receptor class B type I is a novel candidate receptor for the hepatitis C virus. Embo J. 2002;21(19):5017–5025. doi: 10.1093/emboj/cdf529. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 155.Schaller T., Appel N., Koutsoudakis G., et al. Analysis of hepatitis C virus superinfection exclusion by using novel fluorochrome gene-tagged viral genomes. J Virol. 2007;81(9):4591–4603. doi: 10.1128/JVI.02144-06. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 156.Scheel T. K., Gottwein J. M., Jensen T. B., et al. Development of JFH1-based cell culture systems for hepatitis C virus genotype 4a and evidence for cross-genotype neutralization. Proc Natl Acad Sci USA. 2008;105(3):997–1002. doi: 10.1073/pnas.0711044105. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 157.Schinazi R., Ilan E., Black P., et al. Cell-based and animal models for hepatitis B and C viruses. Antivir Chem Chemother. 1999;10(3):99–114. doi: 10.1177/095632029901000301. [DOI] [PubMed] [Google Scholar]
  • 158.Steinmann E., Whitfield T., Kallis S., et al. Antiviral effects of amantadine and iminosugar derivatives against hepatitis C virus. Hepatology. 2007;46(2):330–338. doi: 10.1002/hep.21686. [DOI] [PubMed] [Google Scholar]
  • 159.Sulkowski M. S. Specific targeted antiviral therapy for hepatitis C. Curr Gastroenterol Rep. 2007;9(1):5–13. doi: 10.1007/s11894-008-0015-x. [DOI] [PubMed] [Google Scholar]
  • 160.Suzuki T., Aizaki H., Murakami K., et al. Molecular biology of hepatitis C virus. J Gastroenterol. 2007;42(6):411–423. doi: 10.1007/s00535-007-2030-3. [DOI] [PubMed] [Google Scholar]
  • 161.Tai A. W., Benita Y., Peng L. F., et al. A functional genomic screen identifies cellular cofactors of hepatitis C virus replication. Cell Host Microbe. 2009;5(3):298–307. doi: 10.1016/j.chom.2009.02.001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 162.Tencate V, Sainz B J, Cotler S, et al. 2010. Potential treatment options and future research to increase hepatitis C virus treatment response rate. Hepatic Medicine: Evidence and Research, in press. [DOI] [PMC free article] [PubMed]
  • 163.Trotard M., Lepere-Douard C., Regeard M., et al. Kinases required in hepatitis C virus entry and replication highlighted by small interference RNA screening. Faseb J. 2009;23(11):3780–3789. doi: 10.1096/fj.09-131920. [DOI] [PubMed] [Google Scholar]
  • 164.Tscherne D. M., Jones C. T., Evans M. J., et al. Time- and temperature-dependent activation of hepatitis C virus for low-pH-triggered entry. J Virol. 2006;80(4):1734–1741. doi: 10.1128/JVI.80.4.1734-1741.2006. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 165.Uprichard S. L., Chung J., Chisari F. V., et al. Replication of a hepatitis C virus replicon clone in mouse cells. Virol J. 2006;3:89. doi: 10.1186/1743-422X-3-89. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 166.von Hahn T., Rice C. M. Hepatitis C virus entry. J Biol Chem. 2008;283(7):3689–3693. doi: 10.1074/jbc.R700024200. [DOI] [PubMed] [Google Scholar]
  • 167.Wakita T., Pietschmann T., Kato T., et al. Production of infectious hepatitis C virus in tissue culture from a cloned viral genome. Nat Med. 2005;11(7):791–796. doi: 10.1038/nm1268. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 168.Wang C., Gale M., Jr., Keller B. C., et al. Identification of FBL2 as a geranylgeranylated cellular protein required for hepatitis C virus RNA replication. Mol Cell. 2005;18(4):425–434. doi: 10.1016/j.molcel.2005.04.004. [DOI] [PubMed] [Google Scholar]
  • 169.Watanabe T., Katagiri J., Kojima H., et al. Studies on transmission of human non-A, non-B hepatitis to marmosets. J Med Virol. 1987;22:143–156. doi: 10.1002/jmv.1890220205. [DOI] [PubMed] [Google Scholar]
  • 170.Welsch S., Miller S., Romero-Brey I., et al. Composition and three-dimensional architecture of the dengue virus replication and assembly sites. Cell Host Microbe. 2009;5(4):365–375. doi: 10.1016/j.chom.2009.03.007. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 171.Williams R. Global challenges in liver disease. Hepatology. 2006;44(3):521–526. doi: 10.1002/hep.21347. [DOI] [PubMed] [Google Scholar]
  • 172.Wolk B, Buchele B, Blum H E, et al. A dynamic view of hepatitis C virus replication complexes. Presented at the 11th International Symposium on HCV and related viruses; 2004, Heidelberg, Germany.
  • 173.Wu G. Y., Konishi M., Walton C. M., et al. A novel immunocompetent rat model of HCV infection and hepatitis. Gastroenterology. 2005;128(5):1416–1423. doi: 10.1053/j.gastro.2005.03.015. [DOI] [PubMed] [Google Scholar]
  • 174.Wunschmann S., Medh J. D., Klinzmann D., et al. Characterization of hepatitis C virus (HCV) and HCV E2 interactions with CD81 and the low-density lipoprotein receptor. J Virol. 2000;74(21):10055–10062. doi: 10.1128/JVI.74.21.10055-10062.2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 175.Xie Z., Riezu-Boj J., Lasarte J., et al. Transmission of hepatitis C virus infection to tree shrews. Virology. 1998;244(2):513–520. doi: 10.1006/viro.1998.9127. [DOI] [PubMed] [Google Scholar]
  • 176.Yanagi M., Purcell R. H., Emerson S. U., et al. Hepatitis C virus: an infectious molecular clone of a second major genotype (2a) and lack of viability of intertypic 1a and 2a chimeras. Virology. 1999;262(1):250–263. doi: 10.1006/viro.1999.9889. [DOI] [PubMed] [Google Scholar]
  • 177.Yanagi M., Purcell R. H., Emerson S. U., et al. Transcripts from a single full-length cDNA clone of hepatitis C virus are infectious when directly transfected into the liver of a chimpanzee. Proc Natl Acad Sci USA. 1997;94(16):8738–8743. doi: 10.1073/pnas.94.16.8738. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 178.Yanagi M., St Claire M., Emerson S. U., et al. In vivo analysis of the 3′ untranslated region of the hepatitis C virus after in vitro mutagenesis of an infectious cDNA clone. Proc Natl Acad Sci USA. 1999;96(5):2291–2295. doi: 10.1073/pnas.96.5.2291. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 179.Yanagi M., St Claire M., Shapiro M., et al. Transcripts of a chimeric cDNA clone of hepatitis C virus genotype 1b are infectious in vivo. Virology. 1998;244(1):161–172. doi: 10.1006/viro.1998.9092. [DOI] [PubMed] [Google Scholar]
  • 180.Yang J. P., Zhou D., Wong-Staal F. Screening of small-molecule compounds as inhibitors of HCV entry. Methods Mol Biol. 2009;510:295–304. doi: 10.1007/978-1-59745-394-3_22. [DOI] [PubMed] [Google Scholar]
  • 181.Ye J., Wang C., Sumpter R., Jr., et al. Disruption of hepatitis C virus RNA replication through inhibition of host protein geranylgeranylation. Proc Natl Acad Sci U S A. 2003;100(26):15865–15870. doi: 10.1073/pnas.2237238100. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 182.Yi M., Bodola F., Lemon S. M. Subgenomic hepatitis C virus replicons inducing expression of a secreted enzymatic reporter protein. Virology. 2002;304(2):197–210. doi: 10.1006/viro.2002.1652. [DOI] [PubMed] [Google Scholar]
  • 183.Yi M., Lemon S. Replication of subgenomic hepatitis A virus RNAs expressing firefly luciferase is enhanced by mutations associated with adaptation of virus to growth in cultured cells. J Virol. 2002;76(3):1171–1180. doi: 10.1128/JVI.76.3.1171-1180.2002. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 184.Yi M., Villanueva R. A., Thomas D. L., et al. Production of infectious genotype 1a hepatitis C virus (Hutchinson strain) in cultured human hepatoma cells. Proc Natl Acad Sci USA. 2006;103(7):2310–2315. doi: 10.1073/pnas.0510727103. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 185.Yoo B. J., Selby M. J., Choe J., et al. Transfection of a differentiated human hepatoma cell line (Huh7) with in vitro-transcribed hepatitis C virus (HCV) RNA and establishment of a long-term culture persistently infected with HCV. J Virol. 1995;69(1):32–38. doi: 10.1128/jvi.69.1.32-38.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 186.Yu X., Sainz B., Jr., Uprichard S. L. Development of a cell-based hepatitis C virus infection fluorescent resonance energy transfer assay for high-throughput antiviral compound screening. Antimicrob Agents Chemother. 2009;53(10):4311–4319. doi: 10.1128/AAC.00495-09. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 187.Zeisel M. B., Barth H., Schuster C., et al. Hepatitis C virus entry: molecular mechanisms and targets for antiviral therapy. Front Biosci. 2009;14:3274–3285. doi: 10.2741/3450. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 188.Zeisel M. B., Koutsoudakis G., Schnober E. K., et al. Scavenger receptor class B type I is a key host factor for hepatitis C virus infection required for an entry step closely linked to CD81. Hepatology. 2007;46(6):1722–1731. doi: 10.1002/hep.21994. [DOI] [PubMed] [Google Scholar]
  • 189.Zhang Y., Weady P., Duggal R., et al. Novel chimeric genotype 1b/2a hepatitis C virus suitable for high-throughput screening. Antimicrob Agents Chemother. 2008;52(2):666–674. doi: 10.1128/AAC.01133-07. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 190.Zhao X., Tang Z., Klumpp B., et al. Primary hepatocytes of Tupaia belangeri as a potential model for hepatitis C virus infection. J Clin Invest. 2002;109(2):221–232. doi: 10.1172/JCI13011. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 191.Zhong J., Gastaminza P., Cheng G., et al. Robust hepatitis C virus infection in vitro. Proc Natl Acad Sci USA. 2005;102(26):9294–9299. doi: 10.1073/pnas.0503596102. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 192.Zhu H., Elyar J., Foss R., et al. Primary human hepatocyte culture for HCV study. Methods Mol Biol. 2009;510:373–382. doi: 10.1007/978-1-59745-394-3_28. [DOI] [PubMed] [Google Scholar]

Articles from Virologica Sinica are provided here courtesy of Wuhan Institute of Virology, Chinese Academy of Sciences

RESOURCES