Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1990 Mar;85(3):950–954. doi: 10.1172/JCI114524

Complex regulation of calcium current in cardiac cells. Dependence on a pertussis toxin-sensitive substrate, adenosine triphosphate, and an alpha 1-adrenoceptor.

E C Keung 1, J S Karliner 1
PMCID: PMC296515  PMID: 1968910

Abstract

We investigated regulation of the cardiac L-type calcium channel by intracellular ATP and by alpha 1-adrenergic agonism using single adult guinea pig ventricular cells and the whole-cell patch clamp method. Inclusion of 5 mM ATP in the patch clamp pipette prevented calcium current rundown but did not increase the maximal magnitude of the slow inward calcium current (ICa). During beta 1-adrenergic blockade with 10 microM (-)-propranolol, cells preincubated with 1 microgram/ml pertussis toxin for 2-5 h exhibited a rapid twofold increase in ICa after rupture of the membrane patch when 5 mM ATP was present in the patch clamp pipette. In the absence of ATP, the increase in ICa did not occur. In pertussis toxin-treated cells, 100 microM (-)-phenylephrine inhibited the augmentation of ICa. This inhibitory effect was blocked by 100 nM terazosin, a selective alpha 1-antagonist. The inhibitory effect of alpha 1-adrenergic agonism was not mediated by cAMP-dependent phosphodiesterase since incubation with 100 microM (-)-phenylephrine did not augment the activity of this enzyme. We conclude that regulation of the L-type calcium channel in cardiac cells is complex, and is dependent on a pertussis toxin-sensitive substrate, ATP, and an alpha 1-adrenergic receptor. The marked increase in ICa after pertussis toxin treatment in the presence of ATP indicates significant inhibition of ICa by a pertussis toxin substrate, presumably the guanine nucleotide inhibitory protein (Gi) in the basal state. The inhibitory action of (-)-phenylephrine in pertussis toxin-treated cells is consistent with modulation of ICa by an alpha 1-adrenergic receptor not coupled to Gi.

Full text

PDF
952

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Alvarez R., Taylor A., Fazzari J. J., Jacobs J. R. Regulation of cyclic AMP metabolism in human platelets. Sequential activation of adenylate cyclase and cyclic AMP phosphodiesterase by prostaglandins. Mol Pharmacol. 1981 Sep;20(2):302–309. [PubMed] [Google Scholar]
  2. Apkon M., Nerbonne J. M. Alpha 1-adrenergic agonists selectively suppress voltage-dependent K+ current in rat ventricular myocytes. Proc Natl Acad Sci U S A. 1988 Nov;85(22):8756–8760. doi: 10.1073/pnas.85.22.8756. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Armstrong D., Eckert R. Voltage-activated calcium channels that must be phosphorylated to respond to membrane depolarization. Proc Natl Acad Sci U S A. 1987 Apr;84(8):2518–2522. doi: 10.1073/pnas.84.8.2518. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bean B. P., Nowycky M. C., Tsien R. W. Beta-adrenergic modulation of calcium channels in frog ventricular heart cells. 1984 Jan 26-Feb 1Nature. 307(5949):371–375. doi: 10.1038/307371a0. [DOI] [PubMed] [Google Scholar]
  5. Belles B., Malécot C. O., Hescheler J., Trautwein W. "Run-down" of the Ca current during long whole-cell recordings in guinea pig heart cells: role of phosphorylation and intracellular calcium. Pflugers Arch. 1988 Apr;411(4):353–360. doi: 10.1007/BF00587713. [DOI] [PubMed] [Google Scholar]
  6. Berridge M. J., Irvine R. F. Inositol trisphosphate, a novel second messenger in cellular signal transduction. Nature. 1984 Nov 22;312(5992):315–321. doi: 10.1038/312315a0. [DOI] [PubMed] [Google Scholar]
  7. Brum G., Osterrieder W., Trautwein W. Beta-adrenergic increase in the calcium conductance of cardiac myocytes studied with the patch clamp. Pflugers Arch. 1984 Jun;401(2):111–118. doi: 10.1007/BF00583870. [DOI] [PubMed] [Google Scholar]
  8. Brückner R., Scholz H. Effects of alpha-adrenoceptor stimulation with phenylephrine in the presence of propranolol on force of contraction, slow inward current and cyclic AMP content in the bovine heart. Br J Pharmacol. 1984 May;82(1):223–232. doi: 10.1111/j.1476-5381.1984.tb16462.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Buxton I. L., Brunton L. L. Action of the cardiac alpha 1-adrenergic receptor. Activation of cyclic AMP degradation. J Biol Chem. 1985 Jun 10;260(11):6733–6737. [PubMed] [Google Scholar]
  10. Culling W., Penny W. J., Cunliffe G., Flores N. A., Sheridan D. J. Arrhythmogenic and electrophysiological effects of alpha adrenoceptor stimulation during myocardial ischaemia and reperfusion. J Mol Cell Cardiol. 1987 Mar;19(3):251–258. doi: 10.1016/s0022-2828(87)80592-8. [DOI] [PubMed] [Google Scholar]
  11. Exton J. H. Mechanisms involved in alpha-adrenergic phenomena. Am J Physiol. 1985 Jun;248(6 Pt 1):E633–E647. doi: 10.1152/ajpendo.1985.248.6.E633. [DOI] [PubMed] [Google Scholar]
  12. Filburn C. R., Karn J. An isotopic assay of cyclic 3',5'-nucleotide phosphodiesterase with aluminum oxide columns. Anal Biochem. 1973 Apr;52(2):505–516. doi: 10.1016/0003-2697(73)90055-9. [DOI] [PubMed] [Google Scholar]
  13. Forscher P., Oxford G. S. Modulation of calcium channels by norepinephrine in internally dialyzed avian sensory neurons. J Gen Physiol. 1985 May;85(5):743–763. doi: 10.1085/jgp.85.5.743. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Gettys T. W., Vine A. J., Simonds M. F., Corbin J. D. Activation of the particulate low Km phosphodiesterase of adipocytes by addition of cAMP-dependent protein kinase. J Biol Chem. 1988 Jul 25;263(21):10359–10363. [PubMed] [Google Scholar]
  15. Hamill O. P., Marty A., Neher E., Sakmann B., Sigworth F. J. Improved patch-clamp techniques for high-resolution current recording from cells and cell-free membrane patches. Pflugers Arch. 1981 Aug;391(2):85–100. doi: 10.1007/BF00656997. [DOI] [PubMed] [Google Scholar]
  16. Hescheler J., Kameyama M., Trautwein W. On the mechanism of muscarinic inhibition of the cardiac Ca current. Pflugers Arch. 1986 Aug;407(2):182–189. doi: 10.1007/BF00580674. [DOI] [PubMed] [Google Scholar]
  17. Hescheler J., Nawrath H., Tang M., Trautwein W. Adrenoceptor-mediated changes of excitation and contraction in ventricular heart muscle from guinea-pigs and rabbits. J Physiol. 1988 Mar;397:657–670. doi: 10.1113/jphysiol.1988.sp017024. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Hescheler J., Rosenthal W., Trautwein W., Schultz G. The GTP-binding protein, Go, regulates neuronal calcium channels. 1987 Jan 29-Feb 4Nature. 325(6103):445–447. doi: 10.1038/325445a0. [DOI] [PubMed] [Google Scholar]
  19. Holz G. G., 4th, Rane S. G., Dunlap K. GTP-binding proteins mediate transmitter inhibition of voltage-dependent calcium channels. Nature. 1986 Feb 20;319(6055):670–672. doi: 10.1038/319670a0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Horn E. M., Corwin S. J., Steinberg S. F., Chow Y. K., Neuberg G. W., Cannon P. J., Powers E. R., Bilezikian J. P. Reduced lymphocyte stimulatory guanine nucleotide regulatory protein and beta-adrenergic receptors in congestive heart failure and reversal with angiotensin converting enzyme inhibitor therapy. Circulation. 1988 Dec;78(6):1373–1379. doi: 10.1161/01.cir.78.6.1373. [DOI] [PubMed] [Google Scholar]
  21. Imoto Y., Yatani A., Reeves J. P., Codina J., Birnbaumer L., Brown A. M. Alpha-subunit of Gs directly activates cardiac calcium channels in lipid bilayers. Am J Physiol. 1988 Oct;255(4 Pt 2):H722–H728. doi: 10.1152/ajpheart.1988.255.4.H722. [DOI] [PubMed] [Google Scholar]
  22. Kaczmarek L. K. Phorbol esters, protein phosphorylation and the regulation of neuronal ion channels. J Exp Biol. 1986 Sep;124:375–392. doi: 10.1242/jeb.124.1.375. [DOI] [PubMed] [Google Scholar]
  23. Kameyama M., Hofmann F., Trautwein W. On the mechanism of beta-adrenergic regulation of the Ca channel in the guinea-pig heart. Pflugers Arch. 1985 Oct;405(3):285–293. doi: 10.1007/BF00582573. [DOI] [PubMed] [Google Scholar]
  24. Karliner J. S., Barnes P., Hamilton C. A., Dollery C. T. alpha 1-Adrenergic receptors in guinea pig myocardium: identification by binding of a new radioligand, (3H)-prazosin. Biochem Biophys Res Commun. 1979 Sep 12;90(1):142–149. doi: 10.1016/0006-291x(79)91601-2. [DOI] [PubMed] [Google Scholar]
  25. Karliner J. S., Stevens M. B., Honbo N., Hoffman J. I. Effects of acute ischemia in the dog on myocardial blood flow, beta receptors, and adenylate cyclase activity with and without chronic beta blockade. J Clin Invest. 1989 Feb;83(2):474–481. doi: 10.1172/JCI113906. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  27. Marchetti C., Brown A. M. Protein kinase activator 1-oleoyl-2-acetyl-sn-glycerol inhibits two types of calcium currents in GH3 cells. Am J Physiol. 1988 Jan;254(1 Pt 1):C206–C210. doi: 10.1152/ajpcell.1988.254.1.C206. [DOI] [PubMed] [Google Scholar]
  28. Morris S. A., Bilezikian J. P. Modifications of the adenylate cyclase complex during differentiation of cultured myoblasts. J Cell Physiol. 1986 Apr;127(1):28–38. doi: 10.1002/jcp.1041270105. [DOI] [PubMed] [Google Scholar]
  29. Nargeot J., Nerbonne J. M., Engels J., Lester H. A. Time course of the increase in the myocardial slow inward current after a photochemically generated concentration jump of intracellular cAMP. Proc Natl Acad Sci U S A. 1983 Apr;80(8):2395–2399. doi: 10.1073/pnas.80.8.2395. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Rane S. G., Dunlap K. Kinase C activator 1,2-oleoylacetylglycerol attenuates voltage-dependent calcium current in sensory neurons. Proc Natl Acad Sci U S A. 1986 Jan;83(1):184–188. doi: 10.1073/pnas.83.1.184. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Reuter H. Calcium channel modulation by neurotransmitters, enzymes and drugs. Nature. 1983 Feb 17;301(5901):569–574. doi: 10.1038/301569a0. [DOI] [PubMed] [Google Scholar]
  32. Rosenthal W., Hescheler J., Trautwein W., Schultz G. Control of voltage-dependent Ca2+ channels by G protein-coupled receptors. FASEB J. 1988 Sep;2(12):2784–2790. doi: 10.1096/fasebj.2.12.2457531. [DOI] [PubMed] [Google Scholar]
  33. Silver L. H., Hemwall E. L., Marino T. A., Houser S. R. Isolation and morphology of calcium-tolerant feline ventricular myocytes. Am J Physiol. 1983 Nov;245(5 Pt 1):H891–H896. doi: 10.1152/ajpheart.1983.245.5.H891. [DOI] [PubMed] [Google Scholar]
  34. Trautwein W., Taniguchi J., Noma A. The effect of intracellular cyclic nucleotides and calcium on the action potential and acetylcholine response of isolated cardiac cells. Pflugers Arch. 1982 Feb;392(4):307–314. doi: 10.1007/BF00581624. [DOI] [PubMed] [Google Scholar]
  35. Tsien R. W. Adrenaline-like effects of intracellular iontophoresis of cyclic AMP in cardiac Purkinje fibres. Nat New Biol. 1973 Sep 26;245(143):120–122. doi: 10.1038/newbio245120a0. [DOI] [PubMed] [Google Scholar]
  36. Tsien R. W. Calcium channels in excitable cell membranes. Annu Rev Physiol. 1983;45:341–358. doi: 10.1146/annurev.ph.45.030183.002013. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES