Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1990 Sep;86(3):923–931. doi: 10.1172/JCI114794

A molecular defect in hepatic cholesterol biosynthesis in sitosterolemia with xanthomatosis.

L B Nguyen 1, S Shefer 1, G Salen 1, G C Ness 1, G S Tint 1, F G Zaki 1, I Rani 1
PMCID: PMC296812  PMID: 2394840

Abstract

We examined the relationship between cholesterol biosynthesis and total and high affinity LDL binding in liver specimens from two sitosterolemic and 12 healthy control subjects who died unexpectedly and whose livers became available when no suitable recipient for transplantation was identified. Accelerated atherosclerosis, unrestricted intestinal sterol absorption, increased plasma and tissue plant sterol concentrations, and low cholesterol synthesis characterize this disease. Mean total microsomal HMG-CoA reductase (rate-control controlling enzyme for cholesterol biosynthesis) activity was sevenfold higher (98.1 +/- 28.8 vs. 15.0 +/- 2.0 pmol/mg protein per min) and microsomal enzyme protein mass was eightfold larger (1.43 +/- 0.41 vs. 0.18 +/- 0.04 relative densitometric U/mg protein) in 11 controls than the average for two sitosterolemic liver specimens. HMG-CoA reductase mRNA probed with pRED 227 and pHRED 102 was decreased to barely detectable levels in the sitosterolemic livers. In addition, there was a 50% decrease in the rate [2-14C]mevalonic acid was converted to cholesterol by sitosterolemic liver slices compared with controls (112 vs. 224 +/- 32 pmol/g liver per h). In contrast, average total LDL binding was 60% greater (326 vs. 204 +/- 10 ng/mg), and high affinity (receptor-mediated) binding 165% more active (253 vs. 95.1 +/- 8.2 ng/mg) in two sitosterolemic liver membrane specimens than the mean for 12 controls. Liver morphology was intact although sitosterolemic hepatocytes and microsomes contained 24 and 14% less cholesterol, respectively, and 10-100 times more plant sterols and 5 alpha-stanols than control specimens. We postulate that inadequate cholesterol biosynthesis is an inherited abnormality in sitosterolemia and may be offset by augmented receptor-mediated LDL catabolism to supply cellular sterols that cannot be formed.

Full text

PDF
927

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aviv H., Leder P. Purification of biologically active globin messenger RNA by chromatography on oligothymidylic acid-cellulose. Proc Natl Acad Sci U S A. 1972 Jun;69(6):1408–1412. doi: 10.1073/pnas.69.6.1408. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bhattacharyya A. K., Connor W. E. Beta-sitosterolemia and xanthomatosis. A newly described lipid storage disease in two sisters. J Clin Invest. 1974 Apr;53(4):1033–1043. doi: 10.1172/JCI107640. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Boberg K. M., Akerlund J. E., Björkhem I. Effect of sitosterol on the rate-limiting enzymes in cholesterol synthesis and degradation. Lipids. 1989 Jan;24(1):9–12. doi: 10.1007/BF02535257. [DOI] [PubMed] [Google Scholar]
  4. Brown M. S., Goldstein J. L. Suppression of 3-hydroxy-3-methylglutaryl coenzyme A reductase activity and inhibition of growth of human fibroblasts by 7-ketocholesterol. J Biol Chem. 1974 Nov 25;249(22):7306–7314. [PubMed] [Google Scholar]
  5. Chirgwin J. M., Przybyla A. E., MacDonald R. J., Rutter W. J. Isolation of biologically active ribonucleic acid from sources enriched in ribonuclease. Biochemistry. 1979 Nov 27;18(24):5294–5299. doi: 10.1021/bi00591a005. [DOI] [PubMed] [Google Scholar]
  6. Goldstein J. L., Basu S. K., Brown M. S. Receptor-mediated endocytosis of low-density lipoprotein in cultured cells. Methods Enzymol. 1983;98:241–260. doi: 10.1016/0076-6879(83)98152-1. [DOI] [PubMed] [Google Scholar]
  7. Gregg R. E., Connor W. E., Lin D. S., Brewer H. B., Jr Abnormal metabolism of shellfish sterols in a patient with sitosterolemia and xanthomatosis. J Clin Invest. 1986 Jun;77(6):1864–1872. doi: 10.1172/JCI112513. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. HAVEL R. J., EDER H. A., BRAGDON J. H. The distribution and chemical composition of ultracentrifugally separated lipoproteins in human serum. J Clin Invest. 1955 Sep;34(9):1345–1353. doi: 10.1172/JCI103182. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Han J. H., Stratowa C., Rutter W. J. Isolation of full-length putative rat lysophospholipase cDNA using improved methods for mRNA isolation and cDNA cloning. Biochemistry. 1987 Mar 24;26(6):1617–1625. doi: 10.1021/bi00380a020. [DOI] [PubMed] [Google Scholar]
  10. Harders-Spengel K., Wood C. B., Thompson G. R., Myant N. B., Soutar A. K. Difference in saturable binding of low density lipoprotein to liver membranes from normocholesterolemic subjects and patients with heterozygous familial hypercholesterolemia. Proc Natl Acad Sci U S A. 1982 Oct;79(20):6355–6359. doi: 10.1073/pnas.79.20.6355. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Harwood H. J., Jr, Schneider M., Stacpoole P. W. Regulation of human leukocyte microsomal hydroxymethylglutaryl-CoA reductase activity by a phosphorylation and dephosphorylation mechanism. Biochim Biophys Acta. 1984 Nov 13;805(3):245–251. doi: 10.1016/0167-4889(84)90079-x. [DOI] [PubMed] [Google Scholar]
  12. Kovanen P. T., Bilheimer D. W., Goldstein J. L., Jaramillo J. J., Brown M. S. Regulatory role for hepatic low density lipoprotein receptors in vivo in the dog. Proc Natl Acad Sci U S A. 1981 Feb;78(2):1194–1198. doi: 10.1073/pnas.78.2.1194. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Kovanen P. T., Brown M. S., Goldstein J. L. Increased binding of low density lipoprotein to liver membranes from rats treated with 17 alpha-ethinyl estradiol. J Biol Chem. 1979 Nov 25;254(22):11367–11373. [PubMed] [Google Scholar]
  14. Lin H. J., Wang C., Salen G., Lam K. C., Chan T. K. Sitosterol and cholesterol metabolism in a patient with coexisting phytosterolemia and cholestanolemia. Metabolism. 1983 Feb;32(2):126–133. doi: 10.1016/0026-0495(83)90216-0. [DOI] [PubMed] [Google Scholar]
  15. McNamara D. J., Bloch C. A., Botha A., Mendelsohn D. Sterol synthesis in vitro in freshly isolated blood mononuclear leukocytes from familial hypercholesterolemic patients treated with probucol. Biochim Biophys Acta. 1985 Mar 6;833(3):412–416. doi: 10.1016/0005-2760(85)90098-0. [DOI] [PubMed] [Google Scholar]
  16. Miettinen T. A. Phytosterolaemia, xanthomatosis and premature atherosclerotic arterial disease: a case with high plant sterol absorption, impaired sterol elimination and low cholesterol synthesis. Eur J Clin Invest. 1980 Feb;10(1):27–35. doi: 10.1111/j.1365-2362.1980.tb00006.x. [DOI] [PubMed] [Google Scholar]
  17. Ness G. C., McCreery M. J., Sample C. E., Smith M., Pendleton L. C. Sulfhydryl/disulfide forms of rat liver 3-hydroxy-3-methylglutaryl coenzyme A reductase. J Biol Chem. 1985 Dec 25;260(30):16395–16399. [PubMed] [Google Scholar]
  18. Nguyen L. B., Salen G., Shefer S., Tint G. S., Shore V., Ness G. C. Decreased cholesterol biosynthesis in sitosterolemia with xanthomatosis: diminished mononuclear leukocyte 3-hydroxy-3-methylglutaryl coenzyme A reductase activity and enzyme protein associated with increased low-density lipoprotein receptor function. Metabolism. 1990 Apr;39(4):436–443. doi: 10.1016/0026-0495(90)90260-j. [DOI] [PubMed] [Google Scholar]
  19. Nguyen L. B., Shefer S., Salen G., Horak I., Tint G. S., McNamara D. J. The effect of abnormal plasma and cellular sterol content and composition on low density lipoprotein uptake and degradation by monocytes and lymphocytes in sitosterolemia with xanthomatosis. Metabolism. 1988 Apr;37(4):346–351. doi: 10.1016/0026-0495(88)90134-5. [DOI] [PubMed] [Google Scholar]
  20. Nguyen L., Salen G., Shefer S., Shore V., Tint G. S., Ness G. Unexpected failure of bile acid malabsorption to stimulate cholesterol synthesis in sitosterolemia with xanthomatosis. Comparison with lovastatin. Arteriosclerosis. 1990 Mar-Apr;10(2):289–297. doi: 10.1161/01.atv.10.2.289. [DOI] [PubMed] [Google Scholar]
  21. Rajavashisth T. B., Taylor A. K., Andalibi A., Svenson K. L., Lusis A. J. Identification of a zinc finger protein that binds to the sterol regulatory element. Science. 1989 Aug 11;245(4918):640–643. doi: 10.1126/science.2562787. [DOI] [PubMed] [Google Scholar]
  22. Sabine J. R., Abraham S., Chaikoff I. L. Control of lipid metabolism in hepatomas: insensitivity of rate of fatty acid and cholesterol synthesis by mouse hepatoma BW7756 to fasting and to feedback control. Cancer Res. 1967 Apr;27(4):793–799. [PubMed] [Google Scholar]
  23. Salen G., Horak I., Rothkopf M., Cohen J. L., Speck J., Tint G. S., Shore V., Dayal B., Chen T., Shefer S. Lethal atherosclerosis associated with abnormal plasma and tissue sterol composition in sitosterolemia with xanthomatosis. J Lipid Res. 1985 Sep;26(9):1126–1133. [PubMed] [Google Scholar]
  24. Salen G., Kwiterovich P. O., Jr, Shefer S., Tint G. S., Horak I., Shore V., Dayal B., Horak E. Increased plasma cholestanol and 5 alpha-saturated plant sterol derivatives in subjects with sitosterolemia and xanthomatosis. J Lipid Res. 1985 Feb;26(2):203–209. [PubMed] [Google Scholar]
  25. Salen G., Shore V., Tint G. S., Forte T., Shefer S., Horak I., Horak E., Dayal B., Nguyen L., Batta A. K. Increased sitosterol absorption, decreased removal, and expanded body pools compensate for reduced cholesterol synthesis in sitosterolemia with xanthomatosis. J Lipid Res. 1989 Sep;30(9):1319–1330. [PubMed] [Google Scholar]
  26. Shefer S., Hauser S., Lapar V., Mosbach E. H. Regulatory effects of sterols and bile acids on hepatic 3-hydroxy-3-methylglutaryl CoA reductase and cholesterol 7alpha-hydroxylase in the rat. J Lipid Res. 1973 Sep;14(5):573–580. [PubMed] [Google Scholar]
  27. Shulman R. S., Bhattacharyya A. K., Connor W. E., Fredrickson D. S. Beta-sitosterolemia and xanthomatosis. N Engl J Med. 1976 Feb 26;294(9):482–483. doi: 10.1056/NEJM197602262940907. [DOI] [PubMed] [Google Scholar]
  28. Simonet W. S., Ness G. C. Transcriptional and posttranscriptional regulation of rat hepatic 3-hydroxy-3-methylglutaryl-coenzyme A reductase by thyroid hormones. J Biol Chem. 1988 Sep 5;263(25):12448–12453. [PubMed] [Google Scholar]
  29. Spady D. K., Bilheimer D. W., Dietschy J. M. Rates of receptor-dependent and -independent low density lipoprotein uptake in the hamster. Proc Natl Acad Sci U S A. 1983 Jun;80(11):3499–3503. doi: 10.1073/pnas.80.11.3499. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Turley S. D., West C. E., Horton B. J. Sterol synthesis in the liver, intestine, and lung of the guinea pig. Lipids. 1976 Apr;11(4):281–286. doi: 10.1007/BF02544054. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES