Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2009 Feb 28;65(Pt 3):o614. doi: 10.1107/S1600536809006412

2-Carboxy­pyridinium hydrogen chloranilate

Kazuma Gotoh a, Hirokazu Nagoshi a, Hiroyuki Ishida a,*
PMCID: PMC2968548  PMID: 21582266

Abstract

In the crystal structure of the title salt, C6H6NO2 +·C6HCl2O4 , the pyridine ring and the mean plane of the hydrogen chloranilate anion form a dihedral angle of 77.40 (8)°. The ionic components are held together by N—H⋯O and O—H⋯O hydrogen bonds, forming a supra­molecular ladder. C—H⋯O inter­actions are also present.

Related literature

For the structures of related carboxy­pyridinium hydrogen chloranilates, see: Gotoh et al. (2006); Tabuchi et al. (2005); Ishida (2009).graphic file with name e-65-0o614-scheme1.jpg

Experimental

Crystal data

  • C6H6NO2 +·C6HCl2O4

  • M r = 332.10

  • Monoclinic, Inline graphic

  • a = 9.4166 (8) Å

  • b = 19.6900 (16) Å

  • c = 6.7089 (6) Å

  • β = 99.043 (3)°

  • V = 1228.45 (18) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.56 mm−1

  • T = 103 K

  • 0.30 × 0.30 × 0.23 mm

Data collection

  • Rigaku R-AXIS RAPID-II diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995) T min = 0.847, T max = 0.880

  • 9710 measured reflections

  • 3433 independent reflections

  • 2228 reflections with I > 2σ(I)

  • R int = 0.047

Refinement

  • R[F 2 > 2σ(F 2)] = 0.045

  • wR(F 2) = 0.144

  • S = 1.10

  • 3433 reflections

  • 202 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.47 e Å−3

  • Δρmin = −0.92 e Å−3

Data collection: PROCESS-AUTO (Rigaku/MSC, 2004); cell refinement: PROCESS-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: CrystalStructure and PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809006412/tk2376sup1.cif

e-65-0o614-sup1.cif (16.9KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809006412/tk2376Isup2.hkl

e-65-0o614-Isup2.hkl (168.4KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O1 0.92 (4) 2.11 (3) 2.932 (2) 147 (3)
O2—H2⋯O5i 0.79 (3) 2.05 (3) 2.746 (2) 148 (3)
O6—H6⋯O4ii 0.90 (3) 1.63 (3) 2.528 (2) 177.1 (15)
C8—H8⋯O4iii 0.95 2.50 3.338 (3) 147
C9—H9⋯O3iv 0.95 2.33 3.227 (3) 156
C11—H11⋯O1v 0.95 2.46 3.374 (3) 162

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic; (v) Inline graphic.

Acknowledgments

This work was supported by a Grant-in-Aid for Scientific Research (C) (No. 19550018) from the Japan Society for the Promotion of Science.

supplementary crystallographic information

Comment

The title salt, (I), was prepared in order to extend our study on D—H···A hydrogen bonding (D = N, O or C; A = N, O or Cl) in chloranilic acid – substituted-pyridine systems (Gotoh et al., 2006; Tabuchi et al., 2005).

Compound (I) comprises 2-carboxypyridinium cations and hydrogen chloranilate anions in the ratio 1:1. Ions directly connected by an N—H···O hydrogen bond, Fig. 1, form a dihedral angle between their respective mean planes of 77.40 (8)°. In the cation, the carboxy O5/O6/C12 plane forms a dihedral angle of 11.44 (6)° with the pyridine ring, which is similar to those of 2.74 (6) and 10.01 (3)° observed in 3-carboxypyridinium hydrogen chloranilate and 4-carboxypyridinium hydrogen chloranilate monohydrate, respectively (Ishida, 2009). The ions are further connected by O—H···O hydrogen bonds (Table 1) to afford a supramolecular ladder running along the c axis (Fig. 2). The ladders are linked by weaker N—H···O hydrogen bonds and C—H···O contacts to form a 3-D network (Table 1).

Experimental

Crystals were obtained by slow evaporation from a methanol solution (ca 30 ml) containing a 1:1 molar ratio of chloranilic acid (0.302 g) and picolinic acid (0.179 g).

Refinement

The H atoms attached to O and N were located from a difference Fourier map and refined isotropically to O—H = 0.79 (3) & 0.90 (3) Å and N—H = 0.92 (4) Å. The remaining H atoms were included in the riding approximation with C—H = 0.95 Å, and with Uiso(H) = 1.2Ueq(C).

Figures

Fig. 1.

Fig. 1.

Molecular components of (I) showing the atom numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. Intra- and inter-molecular N—H···O hydrogen bonds are indicated by dashed lines.

Fig. 2.

Fig. 2.

A partial packing diagram, viewed approximately along the a axis, showing the hydrogen-bonded supramolecular ladder. Dashed lines show N—H···O and O—H···O hydrogen bonds (symmetry codes as given in Table 1).

Crystal data

C6H6NO2+·C6HCl2O4 F(000) = 672.00
Mr = 332.10 Dx = 1.795 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71075 Å
Hall symbol: -P 2ybc Cell parameters from 7392 reflections
a = 9.4166 (8) Å θ = 3.0–30.0°
b = 19.6900 (16) Å µ = 0.56 mm1
c = 6.7089 (6) Å T = 103 K
β = 99.043 (3)° Platelet, dark purple
V = 1228.45 (18) Å3 0.30 × 0.30 × 0.23 mm
Z = 4

Data collection

Rigaku R-AXIS RAPID-II diffractometer 2228 reflections with I > 2σ(I)
Detector resolution: 10.00 pixels mm-1 Rint = 0.047
ω scans θmax = 30.0°
Absorption correction: multi-scan (ABSCOR; Higashi, 1995) h = −13→13
Tmin = 0.847, Tmax = 0.880 k = −27→27
9710 measured reflections l = −8→9
3433 independent reflections

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.144 H atoms treated by a mixture of independent and constrained refinement
S = 1.10 w = 1/[σ2(Fo2) + (0.0659P)2 + 0.8975P] where P = (Fo2 + 2Fc2)/3
3433 reflections (Δ/σ)max < 0.001
202 parameters Δρmax = 0.47 e Å3
0 restraints Δρmin = −0.92 e Å3
Primary atom site location: structure-invariant direct methods

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Cl1 −0.17894 (6) 0.28996 (3) 0.27912 (9) 0.02060 (16)
Cl2 0.46528 (6) 0.29140 (3) 0.10812 (9) 0.02077 (16)
O1 0.00723 (19) 0.40867 (8) 0.2367 (3) 0.0218 (4)
O2 0.01147 (19) 0.17042 (9) 0.2397 (3) 0.0184 (3)
O3 0.27117 (18) 0.17271 (8) 0.1488 (3) 0.0196 (4)
O4 0.27772 (19) 0.41277 (8) 0.1577 (3) 0.0209 (4)
O5 0.12383 (18) 0.45615 (9) 0.6917 (3) 0.0215 (4)
O6 0.3466 (2) 0.47658 (10) 0.8601 (3) 0.0265 (4)
N1 0.1860 (2) 0.52690 (11) 0.3720 (3) 0.0199 (4)
C1 0.0667 (2) 0.35416 (11) 0.2174 (3) 0.0164 (4)
C2 −0.0036 (2) 0.28950 (11) 0.2347 (3) 0.0160 (4)
C3 0.0678 (2) 0.23079 (11) 0.2188 (3) 0.0154 (4)
C4 0.2206 (2) 0.22965 (11) 0.1715 (3) 0.0155 (4)
C5 0.2899 (2) 0.29272 (11) 0.1544 (4) 0.0170 (4)
C6 0.2232 (2) 0.35480 (12) 0.1732 (3) 0.0165 (4)
C7 0.2794 (3) 0.52837 (12) 0.5464 (4) 0.0198 (5)
C8 0.3984 (3) 0.56970 (13) 0.5626 (4) 0.0229 (5)
H8 0.4656 0.5708 0.6840 0.027*
C9 0.4194 (3) 0.60996 (13) 0.3987 (4) 0.0262 (5)
H9 0.5010 0.6388 0.4077 0.031*
C10 0.3206 (3) 0.60759 (13) 0.2230 (4) 0.0268 (5)
H10 0.3332 0.6352 0.1109 0.032*
C11 0.2035 (3) 0.56488 (13) 0.2118 (4) 0.0239 (5)
H11 0.1357 0.5624 0.0913 0.029*
C12 0.2418 (3) 0.48289 (12) 0.7090 (4) 0.0195 (5)
H1 0.109 (5) 0.498 (2) 0.363 (6) 0.053 (11)*
H2 0.071 (4) 0.1437 (17) 0.227 (5) 0.032 (9)*
H6 0.319 (4) 0.4534 (18) 0.964 (6) 0.043 (10)*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Cl1 0.0146 (3) 0.0253 (3) 0.0233 (3) 0.0013 (2) 0.0076 (2) −0.0006 (2)
Cl2 0.0151 (3) 0.0258 (3) 0.0230 (3) −0.0018 (2) 0.0080 (2) −0.0011 (2)
O1 0.0207 (8) 0.0196 (8) 0.0256 (9) 0.0020 (7) 0.0051 (7) −0.0022 (7)
O2 0.0163 (8) 0.0164 (7) 0.0238 (9) 0.0013 (7) 0.0074 (7) −0.0008 (7)
O3 0.0176 (8) 0.0201 (8) 0.0220 (8) 0.0016 (7) 0.0063 (7) −0.0008 (7)
O4 0.0232 (9) 0.0200 (8) 0.0210 (9) −0.0027 (7) 0.0083 (7) 0.0019 (6)
O5 0.0177 (8) 0.0212 (8) 0.0274 (9) −0.0017 (7) 0.0094 (7) 0.0018 (7)
O6 0.0221 (9) 0.0336 (10) 0.0235 (9) −0.0063 (8) 0.0024 (7) 0.0050 (8)
N1 0.0145 (9) 0.0229 (10) 0.0229 (10) −0.0018 (8) 0.0050 (8) 0.0000 (8)
C1 0.0182 (10) 0.0180 (10) 0.0130 (10) 0.0007 (9) 0.0020 (8) 0.0001 (8)
C2 0.0130 (10) 0.0197 (10) 0.0152 (10) 0.0009 (8) 0.0023 (8) −0.0019 (8)
C3 0.0154 (10) 0.0183 (10) 0.0132 (10) −0.0002 (8) 0.0048 (8) 0.0005 (8)
C4 0.0149 (10) 0.0193 (10) 0.0132 (10) 0.0009 (8) 0.0048 (8) 0.0003 (8)
C5 0.0132 (10) 0.0207 (10) 0.0176 (10) −0.0013 (9) 0.0041 (8) −0.0006 (9)
C6 0.0165 (10) 0.0204 (10) 0.0133 (10) −0.0014 (9) 0.0039 (8) −0.0011 (8)
C7 0.0179 (11) 0.0184 (11) 0.0241 (12) 0.0001 (9) 0.0067 (9) −0.0006 (9)
C8 0.0188 (11) 0.0236 (12) 0.0272 (13) 0.0000 (10) 0.0066 (10) −0.0018 (10)
C9 0.0223 (12) 0.0231 (12) 0.0355 (14) −0.0031 (10) 0.0118 (11) 0.0023 (11)
C10 0.0292 (13) 0.0248 (12) 0.0291 (13) 0.0006 (11) 0.0129 (11) 0.0049 (10)
C11 0.0229 (12) 0.0270 (12) 0.0221 (12) 0.0049 (10) 0.0051 (10) 0.0028 (10)
C12 0.0210 (11) 0.0193 (10) 0.0197 (11) −0.0002 (9) 0.0076 (9) −0.0021 (9)

Geometric parameters (Å, °)

Cl1—C2 1.723 (2) C1—C6 1.548 (3)
Cl2—C5 1.727 (2) C2—C3 1.350 (3)
O1—C1 1.227 (3) C3—C4 1.521 (3)
O2—C3 1.318 (3) C4—C5 1.416 (3)
O2—H2 0.79 (3) C5—C6 1.389 (3)
O3—C4 1.237 (3) C7—C8 1.375 (3)
O4—C6 1.263 (3) C7—C12 1.497 (3)
O5—C12 1.218 (3) C8—C9 1.394 (4)
O6—C12 1.305 (3) C8—H8 0.9500
O6—H6 0.90 (4) C9—C10 1.383 (4)
N1—C11 1.340 (3) C9—H9 0.9500
N1—C7 1.349 (3) C10—C11 1.379 (4)
N1—H1 0.92 (4) C10—H10 0.9500
C1—C2 1.448 (3) C11—H11 0.9500
C3—O2—H2 107 (3) O4—C6—C1 115.8 (2)
C12—O6—H6 112 (2) C5—C6—C1 117.90 (19)
C11—N1—C7 122.5 (2) N1—C7—C8 119.6 (2)
C11—N1—H1 119 (2) N1—C7—C12 115.0 (2)
C7—N1—H1 118 (2) C8—C7—C12 125.4 (2)
O1—C1—C2 122.6 (2) C7—C8—C9 119.3 (2)
O1—C1—C6 118.5 (2) C7—C8—H8 120.4
C2—C1—C6 118.91 (19) C9—C8—H8 120.4
C3—C2—C1 120.4 (2) C10—C9—C8 119.5 (2)
C3—C2—Cl1 121.40 (18) C10—C9—H9 120.2
C1—C2—Cl1 118.15 (17) C8—C9—H9 120.2
O2—C3—C2 123.3 (2) C11—C10—C9 119.5 (2)
O2—C3—C4 114.75 (19) C11—C10—H10 120.3
C2—C3—C4 121.9 (2) C9—C10—H10 120.3
O3—C4—C5 126.4 (2) N1—C11—C10 119.7 (2)
O3—C4—C3 115.7 (2) N1—C11—H11 120.2
C5—C4—C3 117.85 (19) C10—C11—H11 120.2
C6—C5—C4 122.9 (2) O5—C12—O6 126.9 (2)
C6—C5—Cl2 119.23 (17) O5—C12—C7 120.4 (2)
C4—C5—Cl2 117.86 (17) O6—C12—C7 112.7 (2)
O4—C6—C5 126.3 (2)
O1—C1—C2—C3 −177.9 (2) C4—C5—C6—C1 0.7 (3)
C6—C1—C2—C3 2.1 (3) Cl2—C5—C6—C1 −179.21 (16)
O1—C1—C2—Cl1 1.3 (3) O1—C1—C6—O4 −0.9 (3)
C6—C1—C2—Cl1 −178.77 (16) C2—C1—C6—O4 179.2 (2)
C1—C2—C3—O2 177.7 (2) O1—C1—C6—C5 179.2 (2)
Cl1—C2—C3—O2 −1.4 (3) C2—C1—C6—C5 −0.7 (3)
C1—C2—C3—C4 −3.3 (3) C11—N1—C7—C8 −0.6 (4)
Cl1—C2—C3—C4 177.58 (16) C11—N1—C7—C12 179.6 (2)
O2—C3—C4—O3 3.3 (3) N1—C7—C8—C9 0.7 (4)
C2—C3—C4—O3 −175.8 (2) C12—C7—C8—C9 −179.5 (2)
O2—C3—C4—C5 −177.73 (19) C7—C8—C9—C10 −0.1 (4)
C2—C3—C4—C5 3.2 (3) C8—C9—C10—C11 −0.7 (4)
O3—C4—C5—C6 177.0 (2) C7—N1—C11—C10 −0.2 (4)
C3—C4—C5—C6 −1.8 (3) C9—C10—C11—N1 0.8 (4)
O3—C4—C5—Cl2 −3.0 (3) N1—C7—C12—O5 −11.4 (3)
C3—C4—C5—Cl2 178.11 (16) C8—C7—C12—O5 168.8 (2)
C4—C5—C6—O4 −179.2 (2) N1—C7—C12—O6 168.4 (2)
Cl2—C5—C6—O4 0.8 (3) C8—C7—C12—O6 −11.4 (3)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N1—H1···O1 0.92 (4) 2.11 (3) 2.932 (2) 147 (3)
N1—H1···O5 0.92 (4) 2.33 (4) 2.698 (2) 103 (2)
N1—H1···O5i 0.92 (4) 2.34 (4) 2.900 (2) 119 (3)
O2—H2···O3 0.79 (3) 2.11 (3) 2.612 (2) 122 (3)
O2—H2···O5ii 0.79 (3) 2.05 (3) 2.746 (2) 148 (3)
O6—H6···O4iii 0.90 (3) 1.63 (3) 2.528 (2) 177.1 (15)
C8—H8···O4iv 0.95 2.50 3.338 (3) 147
C9—H9···O3v 0.95 2.33 3.227 (3) 156
C11—H11···O1vi 0.95 2.46 3.374 (3) 162

Symmetry codes: (i) −x, −y+1, −z+1; (ii) x, −y+1/2, z−1/2; (iii) x, y, z+1; (iv) −x+1, −y+1, −z+1; (v) −x+1, y+1/2, −z+1/2; (vi) −x, −y+1, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: TK2376).

References

  1. Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  2. Gotoh, K., Tabuchi, Y., Akashi, H. & Ishida, H. (2006). Acta Cryst. E62, o4420–o4421.
  3. Higashi, T. (1995). ABSCOR Rigaku Corporation, Tokyo, Japan.
  4. Ishida, H. (2009). Private communication (deposition numbers CCDC 720198 and CCDC 720199). CCDC, Cambridge, England.
  5. Rigaku/MSC (2004). PROCESS-AUTO and CrystalStructure Rigaku/MSC Inc., The Woodlands, Texas, USA.
  6. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  7. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  8. Tabuchi, Y., Takahashi, A., Gotoh, K., Akashi, H. & Ishida, H. (2005). Acta Cryst. E61, o4215–o4217.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809006412/tk2376sup1.cif

e-65-0o614-sup1.cif (16.9KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809006412/tk2376Isup2.hkl

e-65-0o614-Isup2.hkl (168.4KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES