Abstract
Ceruloplasmin labeled with 67copper and administered intravenously to dogs, control human subjects, and patients with excessive gastrointestinal loss was shown to fulfill the requirements for a label for quantification of gastrointestinal protein loss. The radiocopper moiety was poorly absorbed from the gastrointestinal tract, not actively secreted into the intestinal tract, and did not alter significantly the metabolism of ceruloplasmin. Approximately 70% of the body pool of ceruloplasmin in both dog and man was within the intravascular space. In control human subjects the mean ceruloplasmin concentration was 30 mg per 100 ml with total circulating and total body ceruloplasmin pools of 15.5 and 22 mg per kg, respectively. In patients with excessive gastrointestinal protein loss secondary to intestinal lymphangiectasia, the serum ceruloplasmin concentration was reduced to 16 mg per 100 ml with a comparable reduction in the total circulating and total body ceruloplasmin pools to 8.8 and 12 mg per kg.
The survival half-time of ceruloplasmin was 6.1 days in normal human subjects and 4.5 days in normal dogs. From 1.0 to 1.9% of the intravascular pool of ceruloplasmin was lost into the gastrointestinal tract of the dog per day, representing less than 11% of the over-all metabolism of this protein. In control human subjects from 1.9 to 3.9% of the intravascular pool was lost into the gastrointestinal tract each day, representing a maximum of from 11 to 22% of the over-all metabolism of this molecule. In contrast, patients with intestinal lymphangiectasia had a markedly shortened ceruloplasmin survival of 3.1 days, with from 15 to 40% of the intravascular pool of ceruloplasmin cleared into the gastrointestinal tract daily. This represented 76% of the over-all metabolism of this protein. Thus, although bulk loss of serum proteins into the gastrointestinal tract does not normally appear to be a significant factor in protein metabolism in normal dogs and men, such loss is a major factor in the pathogenesis of the hypoceruloplasminemia noted in patients with intestinal lymphangiectasia.
Full text
PDFImages in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- AISEN P., MORELL A. G., ALPERT S., STERNLIEB I. BILIARY EXCRETION FOF CAERULOPLASMIN COPPER. Nature. 1964 Aug 22;203:873–874. doi: 10.1038/203873a0. [DOI] [PubMed] [Google Scholar]
- ANDERSEN S. B., GLENERT J., WALLEVIK K. GAMMA GLOBULIN TURNOVER AND INTESTINAL DEGRADATION OF GAMMA GLOBULIN IN THE DOG. J Clin Invest. 1963 Dec;42:1873–1881. doi: 10.1172/JCI104872. [DOI] [PMC free article] [PubMed] [Google Scholar]
- BARTH W. F., WOCHNER R. D., WALDMANN T. A., FAHEY J. L. METABOLISM OF HUMAN GAMMA MACROGLOBULINS. J Clin Invest. 1964 Jun;43:1036–1048. doi: 10.1172/JCI104987. [DOI] [PMC free article] [PubMed] [Google Scholar]
- BERMAN M., SHAHN E., WEISS M. F. The routine fitting of kinetic data to models: a mathematical formalism for digital computers. Biophys J. 1962 May;2:275–287. doi: 10.1016/s0006-3495(62)86855-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
- BERSON S. A., YALOW R. S., SCHREIBER S. S., POST J. Tracer experiments with I131 labeled human serum albumin: distribution and degradation studies. J Clin Invest. 1953 Aug;32(8):746–768. doi: 10.1172/JCI102789. [DOI] [PMC free article] [PubMed] [Google Scholar]
- CITRIN Y., STERLING K., HALSTED J. A. The mechanism of hypoproteinemia associated with giant hypertrophy of the gastric mucosa. N Engl J Med. 1957 Nov 7;257(19):906–912. doi: 10.1056/NEJM195711072571902. [DOI] [PubMed] [Google Scholar]
- FRANKS J. J., EDWARDS K. W., LACKEY W. W., FITZGERALD J. B. The role of the gut in albumin catabolism. II. Studies in enterectomized rabbits. J Gen Physiol. 1963 Jan;46:427–434. doi: 10.1085/jgp.46.3.427. [DOI] [PMC free article] [PubMed] [Google Scholar]
- GITLIN D., JANEWAY C. A. Turnover of the copper and protein moieties of ceruloplasmin. Nature. 1960 Mar 5;185:693–693. doi: 10.1038/185693a0. [DOI] [PubMed] [Google Scholar]
- GITLIN D., KLINENBERG J. R., HUGHES W. L. Site of catabolism of serum albumin. Nature. 1958 Apr 12;181(4615):1064–1065. doi: 10.1038/1811064b0. [DOI] [PubMed] [Google Scholar]
- GLENERT J., JARNUM S., RIEMER S. The albumin transfer from blood to gastrointestinal tract in dogs. Acta Chir Scand. 1962 Jul;124:63–74. [PubMed] [Google Scholar]
- GOPALAN C., REDDY V., MOHAN V. S. SOME ASPECTS OF COPPER METABOLISM IN PROTEIN-CALORIE MALNUTRITION. J Pediatr. 1963 Oct;63:646–649. doi: 10.1016/s0022-3476(63)80374-1. [DOI] [PubMed] [Google Scholar]
- GORDON R. S., Jr Exudative enteropathy: abnormal permeability of the gastrointestinal tract demonstrable with labelled polyvinylpyrrolidone. Lancet. 1959 Feb 14;1(7068):325–326. doi: 10.1016/s0140-6736(59)90309-5. [DOI] [PubMed] [Google Scholar]
- GULLBERG R., OLHAGEN B. Electrophoresis of human gastric juice. Nature. 1959 Dec 12;184:1848–1849. doi: 10.1038/1841848a0. [DOI] [PubMed] [Google Scholar]
- Gault M. H., Stein J., Aronoff A. Serum ceruloplasmin in hepatobiliary and other disorders: significance of abnormal values. Gastroenterology. 1966 Jan;50(1):8–18. [PubMed] [Google Scholar]
- HOLMAN H., NICKEL W. F., Jr, SLEISENGER M. H. Hypoproteinemia antedating intestinal lesions, and possibly due to excessive serum protein loss into the intestine. Am J Med. 1959 Dec;27:963–975. doi: 10.1016/0002-9343(59)90180-9. [DOI] [PubMed] [Google Scholar]
- JARNUM S. The 131-I-polyvinylpyrrolidone (131-I-PVP)test in gastrointestinal protein loss. Scand J Clin Lab Invest. 1961;13:447–461. doi: 10.1080/00365516109137310. [DOI] [PubMed] [Google Scholar]
- JEEJEEBHOY K. N., COGHILL N. F. The measurement of gastrointestinal protein loss by a new method. Gut. 1961 Jun;2:123–130. doi: 10.1136/gut.2.2.123. [DOI] [PMC free article] [PubMed] [Google Scholar]
- JEFFRIES G. H., HOLMAN H. R., SLEISENGER M. H. Plasma proteins and the gastrointestinal tract. N Engl J Med. 1962 Mar 29;266:652–660. doi: 10.1056/NEJM196203292661307. [DOI] [PubMed] [Google Scholar]
- JONES J. H., MORGAN D. B. Measurement of plasma-protein loss into gastrointestinal tract using 131-I-labelled proteins and oral amberlite resin. Lancet. 1963 Mar 23;1(7282):626–629. doi: 10.1016/s0140-6736(63)91270-4. [DOI] [PubMed] [Google Scholar]
- KASPER C. B., DEUTSCH H. F. Physicochemical studies of human ceruloplasmin. J Biol Chem. 1963 Jul;238:2325–2337. [PubMed] [Google Scholar]
- KATZ J., ROSENFELD S., SELLERS A. L. Sites of plasma albumin catabolism in the rat. Am J Physiol. 1961 Jun;200:1301–1306. doi: 10.1152/ajplegacy.1961.200.6.1301. [DOI] [PubMed] [Google Scholar]
- MATTHEWS C. M. The theory of tracer experiments with 131I-labelled plasma proteins. Phys Med Biol. 1957 Jul;2(1):36–53. doi: 10.1088/0031-9155/2/1/305. [DOI] [PubMed] [Google Scholar]
- MCFARLANE A. S., TODD D., CROMWELL S. FIBRINOGEN CATABOLISM IN HUMANS. Clin Sci. 1964 Jun;26:415–420. [PubMed] [Google Scholar]
- McFARLANE A. S. Efficient trace-labelling of proteins with iodine. Nature. 1958 Jul 5;182(4627):53–53. doi: 10.1038/182053a0. [DOI] [PubMed] [Google Scholar]
- NUSSLE D., BARANDUN S., WITSCHI H. P., KASER H., BETEX M., GIRARDET P. [Intestinal loss of plasmatic proteins in the child. Etiologic and pathogenic aspects]. Helv Paediatr Acta. 1962;16(Suppl 10):1–79. [PubMed] [Google Scholar]
- RAVIN H. A., SELIGMAN A. M., FINE J. Polyvinyl pyrrolidone as a plasma expander; studies on its excretion, distribution and metabolism. N Engl J Med. 1952 Dec 11;247(24):921–929. doi: 10.1056/NEJM195212112472403. [DOI] [PubMed] [Google Scholar]
- SCHEINBERG I. H., MORELL A. G. Exchange of ceruloplasmin copper with ionic Cu64 with reference to Wilson's disease. J Clin Invest. 1957 Aug;36(8):1193–1201. doi: 10.1172/JCI103515. [DOI] [PMC free article] [PubMed] [Google Scholar]
- SCHEINBERG I. H., STERNLIEB I. WILSON'S DISEASE. Annu Rev Med. 1965;16:119–134. doi: 10.1146/annurev.me.16.020165.001003. [DOI] [PubMed] [Google Scholar]
- SCHWARTZ M., THOMSEN B. Idiopathic of hypercatabolic hypoproteinaemia; case examined by 131I-labelled albumin. Br Med J. 1957 Jan 5;1(5009):14–17. doi: 10.1136/bmj.1.5009.14. [DOI] [PMC free article] [PubMed] [Google Scholar]
- SOLOMON A., WALDMANN T. A., FAHEY J. L. Clinical and experimental metabolism of normal 6.6s gamma-globulin in normal subjects and in patients with macroglobulinemia and multiple myeloma. J Lab Clin Med. 1963 Jul;62:1–17. [PubMed] [Google Scholar]
- STERNLIEB I., JANOWITZ H. D. ABSORPTION OF COPPER IN MALABSORPTION SYNDROMES. J Clin Invest. 1964 Jun;43:1049–1055. doi: 10.1172/JCI104988. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sternlieb I., Morell A. G., Tucker W. D., Greene M. W., Scheinberg I. H. THE INCORPORATION OF COPPER INTO CERULOPLASMIN IN VIVO: STUDIES WITH COPPER AND COPPER. J Clin Invest. 1961 Oct;40(10):1834–1840. doi: 10.1172/JCI104407. [DOI] [PMC free article] [PubMed] [Google Scholar]
- WALDMANN T. A. Gastrointestinal protein loss demonstrated by Cr-51-labelled albumin. Lancet. 1961 Jul 15;2(7194):121–123. doi: 10.1016/s0140-6736(61)92646-0. [DOI] [PubMed] [Google Scholar]
- WALDMANN T. A., STEINFELD J. L., DUTCHER T. F., DAVIDSON J. D., GORDON R. S., Jr The role of the gastrointestinal system in "idiopathic hypoproteinemia". Gastroenterology. 1961 Sep;41:197–207. [PubMed] [Google Scholar]
- WALSHE J. M., BRIGGS J. Caeruioplasmin in liver disease. A diagnostic pitfall. Lancet. 1962 Aug 11;2(7250):263–265. doi: 10.1016/s0140-6736(62)90171-x. [DOI] [PubMed] [Google Scholar]
- WETTERFORS J., GULLBERG R., LILJEDAHL S. O., PLANTIN L. O., BIRKE G., OLHAGEN B. Role of the stomach and small intestine in albumin breakdown. Acta Med Scand. 1960 Nov 25;168:347–363. doi: 10.1111/j.0954-6820.1960.tb13456.x. [DOI] [PubMed] [Google Scholar]
- Waldmann T. A. Protein-losing enteropathy. Gastroenterology. 1966 Mar;50(3):422–443. [PubMed] [Google Scholar]