Abstract
The most common causes of neurodegenerative dementia include Alzheimer’s disease (AD), dementia with Lewy bodies (DLB), and frontotemporal dementia (FTD). We believe that, in all 3, aggregates of pathogenic proteins are pathological substrates which are associated with a loss of synaptic function/plasticity. The synaptic plasticity relies on the normal integration of glutamate receptors at the postsynaptic density (PSD). The PSD organizes synaptic proteins to mediate the functional and structural plasticity of the excitatory synapse and to maintain synaptic homeostasis. Here, we will discuss the relevant disruption of the protein network at the PSD in these dementias and the accumulation of the pathological changes at the PSD years before clinical symptoms. We suggest that the functional and structural plasticity changes of the PSD may contribute to the loss of molecular homeostasis within the synapse (and contribute to early symptoms) in these dementias.
Keywords: Alzheimer’s disease, dementia with Lewy bodies, frontotemporal dementia, postsynaptic density
Full Text
The Full Text of this article is available as a PDF (158.8 KB).
Contributor Information
Yuesong Gong, Department of Neurology, Drexel University College of Medicine, Philadelphia, PA, USA, Yuesong.Gong@DrexelMed.edu .
Carol F. Lippa, Department of Neurology, Drexel University College of Medicine, Philadelphia, PA, USA.
References
- Arvanitakis Z. Update on frontotemporal dementia. Neurologist. 2010;16(1):16-22. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ballatore C. , Lee VM, Trojanowski JQ Tau mediated neurodegeneration in Alzheimer’s disease and related disorders. Nat Rev Neurosci. 2007;8(9):663-672. [DOI] [PubMed] [Google Scholar]
- Vossel KA, Miller BL New approaches to the treatment of frontotemporal lobar degeneration. Curr Opin Neurol. 2008;21(6):708-716. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mandelkow E. , von Bergen M., Biernat J., Mandelkow EM Structural principles of tau and the paired helical filaments of Alzheimer’s disease. Brain Pathol . 2007;17(1):83-90. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Terry RD, Masliah E., Salmon DP, et al. Physical basis of cognitive alterations in Alzheimer’s disease: synapse loss is the major correlate of cognitive impairment. Ann Neurol. 1991;30(4):572-580. 6. Brun A., Passant U. Frontal lobe degeneration of non-Alzheimer type. Structural characteristics, diagnostic criteria and relation to other frontotemporal dementias. Acta Neurol Scand Suppl. 1996;168: 28-30. [DOI] [PubMed] [Google Scholar]
- Lippa CF, Pulaski-Salo D., Dickson DW, Smith TW Alzheimer’s disease, Lewy body disease and aging: a comparative study of the perforant pathway. J Neurol Sci. 1997. ;147(2):161-166. [DOI] [PubMed] [Google Scholar]
- Lipton AM, Cullum CM, Satumtira S., et al. Contribution of asymmetric synapse loss to lateralizing clinical deficits in frontotemporal dementias. Arch Neurol. 2001;58(8):1233-1239. [DOI] [PubMed] [Google Scholar]
- Lippa CF Synaptophysin immunoreactivity in Pick’s disease: comparison with Alzheimer’s disease and dementia with Lewy bodies. Am J Alzheimers Dis Other Demen. 2004;19(6):341-344. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Revuelta GJ, Lippa CF Dementia with Lewy bodies and Parkinson’s disease dementia may best be viewed as two distinct entities. Int Psychogeriatr.; 200921(2):213-216. [DOI] [PubMed] [Google Scholar]
- Gong Y., Lippa CF, Zhu J., Lin Q., Rosso AL Disruption of glutamate receptors at Shank-postsynaptic platform in Alzheimer’s disease. Brain Res. 2009;1292:191-198. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Knott GW, Holtmaat A., Wilbrecht L., Welker E., Svoboda K. Spine growth precedes synapse formation in the adult neocortex in vivo. Nat Neurosci. 2006;9(9):1117-1124. [DOI] [PubMed] [Google Scholar]
- Harris KM, Stevens JK Dendritic spines of CA 1 pyramidal cells in the rat hippocampus: serial electron microscopy with reference to their biophysical characteristics. J Neurosci. 1989;9(8):2982-2997. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wallace W., Bear MF A morphological correlate of synaptic scaling in visual cortex. J Neurosci. 2004;24(31):6928-6938. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kim E., Sheng M. PDZ domain proteins of synapses. Nat Rev Neurosci. 2004;5(10):771-781. [DOI] [PubMed] [Google Scholar]
- El-Husseini AE, Schnell E., Chetkovich DM, Nicoll RA, Bredt DS PSD-95 involvement in maturation of excitatory synapses. Science. 2000;290(5495):1364-1368. [PubMed] [Google Scholar]
- Roussignol G., Ango F., Romorini S., et al. Shank expression is sufficient to induce functional dendritic spine synapses in aspiny neurons. J Neurosci. 2005;25(14):3560-3570. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gerrow K., Romorini S., Nabi SM, Colicos MA, Sala C., El-Husseini A. A preformed complex of postsynaptic proteins is involved in excitatory synapse development. Neuron. 2006;49(4):547-562. [DOI] [PubMed] [Google Scholar]
- Ehlers MD Activity level controls postsynaptic composition and signaling via the ubiquitin-proteasome system. Nat Neurosci. 2003;6(3):231-242. [DOI] [PubMed] [Google Scholar]
- Harigaya Y. , Shoji M., Shirao T., Hirai S. Disappearance of actin-binding protein, drebrin, from hippocampal synapses in Alzheimer’s disease. J Neurosci Res. 1996;43(1):87-92. [DOI] [PubMed] [Google Scholar]
- Shim KS, Lubec G. Drebrin, a dendritic spine protein, is manifold decreased in brains of patients with Alzheimer’s disease and Down syndrome. Neurosci Lett. 2002;324(3):209-212. [DOI] [PubMed] [Google Scholar]
- Hering H., Sheng M. Dendritic spines: structure, dynamics and regulation. Nat Rev Neurosci. 2001;2(12):880-888. [DOI] [PubMed] [Google Scholar]
- Yuste R., Bonhoeffer T. Morphological changes in dendritic spines associated with long-term synaptic plasticity. Annu Rev Neurosci. 2001;24:1071-1089. [DOI] [PubMed] [Google Scholar]
- Carlisle HJ , Kennedy MB Spine architecture and synaptic plasticity . Trends Neurosci. 2005;28(4):182-187. [DOI] [PubMed] [Google Scholar]
- Gong Y., Chang L., Viola KL, et al. Alzheimer’s disease-affected brain: presence of oligomeric A beta ligands (ADDLs) suggests a molecular basis for reversible memory loss . Proc Natl Acad Sci U S A. 2003;100(18):10417-10422. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lacor PN, Buniel MC, Chang L., et al. Synaptic targeting by Alzheimer’s-related β-amyloid oligomers. J Neurosci. 2004;24(45):10191-10200. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Takahashi RH , Almeida CG, Kearney PF, et al. Oligomerization of Alzheimer’s beta-amyloid within processes and synapses of cultured neurons and brain. J Neurosci. 2004;24(14):3592-3599. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Koffie RM, Meyer-Luehmann M., Hashimoto T., et al. Oligomeric amyloid beta associates with postsynaptic densities and correlates with excitatory synapse loss near senile plaques. Proc Natl Acad Sci U S A. 2009;106(10):4012-4007. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Boeckers TM The postsynaptic density. Cell Tissue Res. 2006;326(2):409-422. [DOI] [PubMed] [Google Scholar]
- Kennedy MB Signal-processing machines at the postsynaptic density. Science . 2000;290(5492):750-754. [DOI] [PubMed] [Google Scholar]
- Sheng M. Molecular organization of the postsynaptic specialization. Proc Natl Acad Sci U S A. 2001;98(13):7058-7061. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Coleman PD, Yao PJ Synaptic slaughter in Alzheimer’s disease. Neurobiol Aging. 2003;24(8):1023-1027. [DOI] [PubMed] [Google Scholar]
- Shankar GM, Bloodgood BL, Townsend M., Walsh DM, Selkoe DJ, Sabatini BL Natural oligomers of the Alzheimer amyloid-beta protein induce reversible synapse loss by modulating an NMDA-type glutamate receptor-dependent signaling pathway. J Neurosci. 2007;27(11):2866-2875. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lesné S., Ali C., Gabriel C., et al. NMDA receptor activation inhibits alpha-secretase and promotes neuronal amyloid-beta production. J Neurosci. 2005;25(41):9367-9377. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hoey SE, Williams RJ, Perkinton MS Synaptic NMDA receptor activation stimulates alpha-secretase amyloid precursor protein processing and inhibits amyloid-beta production. J Neurosci. 2009;29(14):4442-4460. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gu Z., Liu W., Yan Z. Beta-Amyloid impairs AMPA receptor trafficking and function by reducing Ca2+/calmodulin-dependent protein kinase II synaptic distribution. J Biol Chem. 2009;284(16):10639-10649. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Armstrong DM , Ikonomovic MD, Sheffield R., Wenthold RJ AMPA-selective glutamate receptor subtype immunoreactivity in the entorhinal cortex of non-demented elderly and patients with Alzheimer’s disease. Brain Res. 1994;639(2):207-216. [DOI] [PubMed] [Google Scholar]
- Gasparini L. , Dityatev A. Beta-amyloid and glutamate receptors. Exp Neurol. 2008;212(1):1-4. [DOI] [PubMed] [Google Scholar]
- Procter AW, Qurne M., Francis PT Neurochemical features of frontotemporal dementia. Dement Geriatr Cogn Disord. 1999;10(suppl 1):80-84. [DOI] [PubMed] [Google Scholar]
- Mukhin AG, Ivanova SA, Faden AI mGluR modulation of post-traumatic neuronal death: role of NMDA receptors . Neuroreport. 1997;8(11):2561-2566. [DOI] [PubMed] [Google Scholar]
- O’Leary DM, Movsesyan V., Vicini S., Faden AI Selective mGluR5 antagonists MPEP and SIB-1893 decrease NMDA or glutamate-mediated neuronal toxicity through actions that reflect NMDA receptor antagonism. Br J Pharmacol. 2000;131(7):1429-1437. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Allen JW, Eldadah BA, Faden AI Beta-Amyloid-induced apoptosis of cerebellar granule cells and cortical neurons: exacerbation by selective inhibition of group I metabotropic glutamate receptors . Neuropharmacology. 1999;38(8):1243-1252. [DOI] [PubMed] [Google Scholar]
- Albasanz JL , Dalfó E., Ferrer I., Martín M. Impaired metabotropic glutamate receptor/phospholipase C signaling pathway in the cerebral cortex in Alzheimer’s disease and dementia with Lewy bodies correlates with stage of Alzheimer’s-disease-related changes. Neurobiol Dis. 2005;20(3):685-693. [DOI] [PubMed] [Google Scholar]
- Piggott MA, Owens J., O’Brien J., et al. Muscarinic receptors in basal ganglia in dementia with Lewy bodies, Parkinson’s disease and Alzheimer’s disease. J Chem Neuroanat. 2003;25(3):161-173. [DOI] [PubMed] [Google Scholar]
- Jellinger KA Morphological substrates of mental dysfunction in Lewy body disease: an update . J Neural Transm Suppl. 2000;59:185-212. [DOI] [PubMed] [Google Scholar]
- Levy RB, Aoki C. Alpha7 nicotinic acetylcholine receptors occur at postsynaptic densities of AMPA receptor-positive and -negative excitatory synapses in rat sensory cortex . J Neurosci. 2002;22(12):5001-5015. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Snyder EM, Nong Y., Almeida CG, et al. Regulation of NMDA receptor trafficking by amyloid-beta. Nat Neurosci. 2005;8(8):1051-1058. [DOI] [PubMed] [Google Scholar]
- El-Ghundi M., O’Dowd BF, George SR Insights into the role of dopamine receptor systems in learning and memory . Rev Neurosci. 2007;18(1):37-66. [DOI] [PubMed] [Google Scholar]
- Liu XY, Chu XP, Mao LM, et al. Modulation of D2R-NR2B interactions in response to cocaine. Neuron. 2006;52(5):897-909. [DOI] [PubMed] [Google Scholar]
- Joyce JN, Myers AJ, Gurevich E. Dopamine D2 receptor bands in normal human temporal cortex are absent in Alzheimer’s disease. Brain Res. 1998;784(1-2):7-17. [DOI] [PubMed] [Google Scholar]
- Kemppainen N., Laine M., Laakso MP, et al. Hippocampal dopamine D2 receptors correlate with memory functions in Alzheimer’s disease. Eur J Neurosci. 2003;18(1):149-154. [DOI] [PubMed] [Google Scholar]
- Reeves S., Brown R., Howard R., Grasby P. Increased striatal dopamine (D2/D3) receptor availability and delusions in Alzheimer disease. Neurology. 2009;72(6):528-534. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Piggott MA, Ballard CG, Rowan E., et al. Selective loss of dopamine D2 receptors in temporal cortex in dementia with Lewy bodies, association with cognitive decline. Synapse. 2007;61(11):903-911. [DOI] [PubMed] [Google Scholar]
- Hajszan T., MacLusky NJ, Leranth C. Short-term treatment with the antidepressant fluoxetine triggers pyramidal dendritic spine synapse formation in rat hippocampus. Eur J Neurosci. 2005;21(5):1299-1303. [DOI] [PubMed] [Google Scholar]
- Jones KA, Srivastava DP, Allen JA, Strachan RT, Roth BL, Penzes P. Rapid modulation of spine morphology by the 5-HT2A serotonin receptor through kalirin-7 signaling. Proc Natl Acad Sci U S A. 2009;106(46):19575-19580. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Peddie CJ, Davies HA, Colyer FM, Stewart MG, Rodriguez JJ Colocalisation of serotonin2A receptors with the glutamate receptor subunits NR1 and GluR2 in the dentate gyrus: An ultrastructural study of a modulatory role. Exp Neurol. 2008;211(2):561-573. [DOI] [PubMed] [Google Scholar]
- Abbas AI, Yadav PN, Yao WD, et al. PSD-95 is essential for hallucinogen and atypical antipsychotic drug actions at serotonin receptors. J Neurosci. 2009;29(22):7124-7136. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Yuen EY, Jiang Q., Chen P., Feng J., Yan Z. Activation of 5-HT2A/ C receptors counteracts 5-HT1A regulation of n-methyl-D-aspartate receptor channels in pyramidal neurons of prefrontal cortex. J Biol Chem. 2008;283(25):17194-17204. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Blin J., Baron JC, Dubois B., et al. Loss of brain 5-HT2 receptors in Alzheimer’s disease. In vivo assessment with positron emission tomography and [18F]setoperone. Brain. 1993;116(pt 3):497-510. [DOI] [PubMed] [Google Scholar]
- Hasselbalch SG, Madsen K., Svarer C., et al. Reduced 5-HT2A receptor binding in patients with mild cognitive impairment. Neurobiol Aging. 2008;29(12):1830-1838. [DOI] [PubMed] [Google Scholar]
- Bowen DM, Procter AW, Mann DM, et al. Imbalance of a serotonergic system in frontotemporal dementia: implication for pharmacotherapy. Psychopharmacology ( Berl: ). 2008;196(4):603-610. [DOI] [PubMed] [Google Scholar]
- Lai MK, Tsang SW, Alder JT, et al. Loss of serotonin 5-HT2A receptors in the postmortem temporal cortex correlates with rate of cognitive decline in Alzheimer’s disease . Psychopharmacology (Berl: ). 2005;179(3):673-677. [DOI] [PubMed] [Google Scholar]
- White MF, Yenush L. The IRS-signaling system: a network of docking proteins that mediate insulin and cytokine action. Curr Top Microbiol Immunol. 1998;228:179-208. [DOI] [PubMed] [Google Scholar]
- Abbott MA, Wells DG, Fallon JR The insulin receptor tyrosine kinase substrate p58/53 and the insulin receptor are components of CNS synapses. J Neurosci. 1999;19(17):7300-7308. [DOI] [PMC free article] [PubMed] [Google Scholar]
- De Felice FG , Vieira MN, Bomfim TR, et al. Protection of synapses against Alzheimer’s-linked toxins: insulin signaling prevents the pathogenic binding of Abeta oligomers . Proc Natl Acad Sci U S A. 2009;106(6):1971-1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Strittmatter WJ, Weisgraber KH, Huang DY, et al. Binding of human apolipoprotein E to synthetic amyloid beta peptide: isoform-specific effects and implications for late-onset Alzheimer disease. Proc Natl Acad Sci U S A . 1993;90(17):8098-8102. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Coon KD, Myers AJ, Craig DW, et al. A high-density whole-genome association study reveals that apoE is the major susceptibility gene for sporadic late-onset Alzheimer’s disease. J Clin Psychiatry. 2007;68(4):613-618. [DOI] [PubMed] [Google Scholar]
- Herz J., Chen Y. Reelin, lipoprotein receptors and synaptic plasticity. Nat Rev Neurosci. 2006;7(11):850-859. [DOI] [PubMed] [Google Scholar]
- Hoe HS, Harris DC, Rebeck GW Multiple pathways of apolipoprotein E signaling in primary neurons. J Neurochem. 2005;93(1):145-155. [DOI] [PubMed] [Google Scholar]
- Hoe HS, Pocivavsek A., Chakraborty G., et al. Apolipoprotein E receptor 2 interactions with the N-methyl-D-aspartate receptor. J Biol Chem. 2006;281(6):3425-3431. [DOI] [PubMed] [Google Scholar]
- Gotthardt M. , Trommsdorff M., Nevitt MF, et al. Interactions of the low density lipoprotein receptor gene family with cytosolic adaptor and scaffold proteins suggest diverse biological functions in cellular communication and signal transduction . J Biol Chem. 2000;275(33):25616-25624. [DOI] [PubMed] [Google Scholar]
- May P., Rohlmann A., Bock HH, et al. Neuronal LRP1 functionally associates with postsynaptic proteins and is required for normal motor function in mice. Mol Cell Biol. 2004;24(20):8872-8883. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Roberts RC, Xu L., Roche JK, Kirkpatrick B. Ultrastructural localization of reelin in the cortex in post-mortem human brain. J Comp Neurol. 2005;482(3):294-308. [DOI] [PubMed] [Google Scholar]
- Botella-López A., Burgaya F., Gavín R., et al. Reelin expression and glycosylation patterns are altered in Alzheimer’s disease. Proc Natl Acad Sci U S A. 2006;103(14):5573-5578. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Knuesel I., Nyffeler M., Mormède C., et al. Age-related accumulation of Reelin in amyloid-like deposits . Neurobiol Aging. 2009;30(5):697-716. [DOI] [PubMed] [Google Scholar]
- Hoe HS, Lee KJ, Carney RS, et al. Interaction of reelin with amyloid precursor protein promotes neurite outgrowth. J Neurosci. 2009;29(23):7459-7473. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hoe HS, Rebeck GW Functional interactions of APP with the apoE receptor family. J Neurochem. 2008;106(6):2263-2271. [DOI] [PubMed] [Google Scholar]
- Wu K., Xu JL, Suen PC, et al. Functional trkB neurotrophin receptors are intrinsic components of the adult brain postsynaptic density. Brain Res Mol Brain Res. 1996;43(1-2):286-290. [DOI] [PubMed] [Google Scholar]
- Ji Y., Pang PT, Feng L., Lu B. Cyclic AMP controls BDNFinduced TrkB phosphorylation and dendritic spine formation in mature hippocampal neurons. Nat Neurosci. 2005;8(2):164-172. [DOI] [PubMed] [Google Scholar]
- Nagahara AH, Merrill DA, Coppola G., et al. Neuroprotective effects of brain-derived neurotrophic factor in rodent and primate models of Alzheimer’s disease. Nat Med. 2009;15(3): 331-337. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Simmons DA, Rex CS, Palmer L., et al. Up-regulating BDNF with an ampakine rescues synaptic plasticity and memory in Huntington’s disease knockin mice. Proc Natl Acad Sci U S A. 2009;106(12):4906-4911. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gardoni F. MAGUK proteins: new targets for pharmacological intervention in the glutamatergic synapse. Eur J Pharmacol. 2008;585(1):147-152. [DOI] [PubMed] [Google Scholar]
- Nyffeler M. , Zhang WN, Feldon J., Knuesel I. Differential expression of PSD proteins in age-related spatial learning impairments. Neurobiol Aging . 2007;28(1):143-155. [DOI] [PubMed] [Google Scholar]
- Leuba G., Savioz A., Vernay A., et al. Differential changes in synaptic proteins in the Alzheimer frontal cortex with marked increase in PSD-95 postsynaptic protein. J Alzheimers Dis. 2008;15(1):139-151. [DOI] [PubMed] [Google Scholar]
- Gylys KH, Fein JA, Yang F., Wiley DJ, Miller CA, Cole GM Synaptic changes in Alzheimer’s disease: increased amyloid-beta and gliosis in surviving terminals is accompanied by decreased PSD-95 fluorescence . Am J Pathol. 2004;165(5):1809-1817. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Christopherson KS, Hillier BJ, Lim WA, Bredt DS PSD-95 assembles a ternary complex with the N-methyl-D-aspartic acid receptor and a bivalent neuronal NO synthase PDZ domain. J Biol Chem. 1999;274(39):27467-27473. [DOI] [PubMed] [Google Scholar]
- Lin Y., Jover-Mengual T., Wong J., Bennett MV, Zukin RS PSD-95 and PKC converge in regulating NMDA receptor trafficking and gating . Proc Natl Acad Sci U S A. 2006;103(52):19902-19907. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ehrlich I., Klein M., Rumpel S., Malinow R. PSD-95 is required for activity-driven synapse stabilization. Proc Natl Acad Sci U S A. 2007;104(10):4176-4181. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Baron MK, Boeckers TM, Vaida B., et al. An architectural framework that may lie at the core of the postsynaptic density. Science. 2006;311(5760):531-535. [DOI] [PubMed] [Google Scholar]
- Roselli F., Tirard M., Lu J., et al. Soluble beta-amyloid1-40 induces NMDA-dependent degradation of postsynaptic density-95 at glutamatergic synapses. J Neurosci . 2005;25(48):11061-11070. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Carlisle HJ , Manzerra P., Marcora E., Kennedy MB SynGAP regulates steady-state and activity-dependent phosphorylation of cofilin. J Neurosci. 2008. ;28(50):13673-13683. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ivanov A., Esclapez M., Ferhat L. Role of drebrin A in dendritic spine plasticity and synaptic function: implications in neurological disorders. Commun Integr Biol. 2009;2(3):268-270. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hotulainen P., Llano O., Smirnov S., et al. Defining mechanisms of actin polymerization and depolymerization during dendritic spine morphogenesis. J Cell Biol. 2009;185(2):323-339. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Morishita W. , Marie H., Malenka RC Distinct triggering and expression mechanisms underlie LTD of AMPA and NMDA synaptic responses. Nat Neurosci . 2005;8(8):1043-1050. [DOI] [PubMed] [Google Scholar]
- Lee-Hoeflich ST, Causing CG, Podkowa M., Zhao X., Wrana JL, Attisano L. Activation of LIMK1 by binding to the BMP receptor, BMPRII, regulates BMP-dependent dendritogenesis. EMBO J. 2004;23(24):4792-4801. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Davis RC, Maloney MT, Minamide LS, Flynn KC, Stonebraker MA, Bamburg JR Mapping cofilin-actin rods in stressed hippocampal slices and the role of cdc42 in amyloid-beta-induced rods. J Alzheimers Dis. 2009;18(1):35-50. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Shepherd CE , McCann H., Thiel E., Halliday GM Neurofilamentimmunoreactive neurons in Alzheimer’s disease and dementia with Lewy bodies. Neurobiol Dis. 2002;9(2):249-257. [DOI] [PubMed] [Google Scholar]
- Hansen LA, Samuel W. Criteria for Alzheimer’s disease and the nosology of dementia with Lewy bodies. Neurology. 1997;48(1):126-132. [DOI] [PubMed] [Google Scholar]
- Futai K., Kim MJ, Hashikawa T., Scheiffele P., Sheng M., Hayashi Y. Retrograde modulation of presynaptic release probability through signaling mediated by PSD-95-neuroligin. Nat Neurosci. 2007;10(2):186-195. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zhong N., Scearce-Levie K., Ramaswamy G., Weisgraber KH Apolipoprotein E4 domain interaction: synaptic and cognitive deficits in mice . Alzheimers Dement. 2008;4(3):179-192. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Caltagarone J., Jing Z., Bowser R. Focal adhesions regulate Abeta signaling and cell death in Alzheimer’s disease. Biochim Biophys Acta . 2007;1772(4):438-445. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Togashi H. , Abe K., Mizoguchi A., Takaoka K., Chisaka O., Takeichi M. Cadherin regulates dendritic spine morphogenesis . Neuron. 2002;35(1):77-89. [DOI] [PubMed] [Google Scholar]
- Okabe T., Nakamura T., Nishimura YN, et al. RICS, a novel GTPase-activating protein for Cdc42 and Rac1, is involved in the beta-catenin-N-cadherin and N-methyl-D-aspartate receptor signaling. J Biol Chem. 2003;278(11):9920-9927. [DOI] [PubMed] [Google Scholar]
- Fannon AM, Colman DR A model for central synaptic junctional complex formation based on the differential adhesive specificities of the cadherins. Neuron. 1996;17(3):423-434. [DOI] [PubMed] [Google Scholar]
- Benson DL, Tanaka H. N-cadherin redistribution during synaptogenesis in hippocampal neurons. J Neurosci. 1998;18(17):6892-6904. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Silverman JB, Restituito S., Lu W., Lee-Edwards L., Khatri L., Ziff EB Synaptic anchorage of AMPA receptors by cadherins through neural plakophilin-related arm protein AMPA receptor-binding protein complexes. J Neurosci. 2007;27(32):8505-8516. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Marambaud P., Wen PH, Dutt A., et al. ACBP binding transcriptional repressor produced by the PS1/epsilon-cleavage of N-cadherin is inhibited by PS1 FAD mutations. Cell. 2003;114(5):635-645. [DOI] [PubMed] [Google Scholar]
- Uemura K., Kihara T., Kuzuya A., et al. Characterization of sequential N-cadherin cleavage by ADAM10 and PS1. Neurosci Lett. 2006;402(3):278-283. [DOI] [PubMed] [Google Scholar]
- Serban G., Kouchi Z., Baki L., et al. Cadherins mediate both the association between PS1 and beta-catenin and the effects of PS1 on beta-catenin stability. J Biol Chem . 2005;280(43):36007-36012. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Simón AM, de Maturana RL, Ricobaraza A., et al. Early changes in hippocampal eph receptors precede the onset of memory decline in mouse models of Alzheimer’s disease . J Alzheimers Dis. 2009;17(4):773-786. [DOI] [PubMed] [Google Scholar]
- Shirazi SK , Wood JG The protein tyrosine kinase, fyn, in Alzheimer’s disease pathology. Neuroreport. 1993;4(4):435-437. [DOI] [PubMed] [Google Scholar]
- Singh TJ, Grundke-Iqbal I., Wu WQ, et al. Protein kinase C and calcium/calmodulin-dependent protein kinase II phosphorylate three-repeat and four-repeat tau isoforms at different rates . Mol Cell Biochem. 1997;168(1-2):141-148. [DOI] [PubMed] [Google Scholar]
- Pascale A., Amadio M., Govoni S., Battaini F. The aging brain, a key target for the future: the protein kinase C involvement . Pharmacol Res. 2007;55(6):560-569. [DOI] [PubMed] [Google Scholar]
- Ma QL, Yang F., Calon F., et al. p21-activated kinase-aberrant activation and translocation in Alzheimer disease pathogenesis. J Biol Chem. 2008;283(20):14132-14143. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Salminen A., Suuronen T., Kaarniranta K. ROCK, PAK, and Toll of synapses in Alzheimer’s disease. Biochem Biophys Res Commun. 2008;371(4):587-590. [DOI] [PubMed] [Google Scholar]
- Wu HY, Hudry E., Hashimoto T., et al. Beta-Amyloid induces the morphological neurodegenerative triad of spine loss, dendritic simplification, and neuritic dystrophies through calcineurin activation. J Neurosci. 2010;30(7):2636-2649. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zhao WQ, Santini F., Breese R., et al. Inhibition of calcineurin-mediated endocytosis and alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid (AMPA) receptors prevents beta-amyloid oligomer-induced synaptic disruption . J Biol Chem. 2010;285(10):7619-7632. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Vintém AP, Henriques AG, da Cruz E., Silva OA, da Cruz E., Silva EF PP1 inhibition by Abeta peptide as a potential pathological mechanism in Alzheimer’s disease. Neurotoxicol Teratol. 2009;31(2):85-88. [DOI] [PubMed] [Google Scholar]
- Wang JZ, Grundke-Iqbal I., Iqbal K. Kinases and phosphatases and tau sites involved in Alzheimer neurofibrillary degeneration. Eur J Neurosci. 2007;25(1):59-68. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Galimberti D., Venturelli E., Gatti A., et al. Association of neuronal nitric oxide synthase C276T polymorphism with Alzheimer’s disease. J Neurol. 2005;252(8):985-986. [DOI] [PubMed] [Google Scholar]
- Liu F. , Shi J., Tanimukai H., et al. Reduced O-GlcNAcylation links lower brain glucose metabolism and tau pathology in Alzheimer’s disease. Brain. 2009;132(pt 7):1820-1832. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lu KP, Zhou XZ The prolyl isomerase PIN1: a pivotal new twist in phosphorylation signalling and disease. Nat Rev Mol Cell Biol. 2007;8(11):904-916. [DOI] [PubMed] [Google Scholar]