Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1989 Aug;86(16):6421–6425. doi: 10.1073/pnas.86.16.6421

Role of Ca2+ channels in the ability of membrane depolarization to prevent neuronal death induced by trophic-factor deprivation: evidence that levels of internal Ca2+ determine nerve growth factor dependence of sympathetic ganglion cells.

T Koike 1, D P Martin 1, E M Johnson Jr 1
PMCID: PMC297852  PMID: 2548215

Abstract

Sympathetic neurons depend on nerve growth factor (NGF) for their survival both in vivo and in vitro; these cells die upon acute deprivation of NGF. We studied the effects of agents that cause membrane depolarization on neuronal survival after NGF deprivation. High-K+ medium (greater than or equal to 33 mM) prevented cell death; the effect of K+ was dose-dependent (EC50 = 21 mM). The protection by high K+ was abolished either by withdrawal of extracellular Ca2+ or by preloading the cells with a Ca2+ chelator. The involvement of Ca2+ flux across membranes in high-K+ saving of NGF-deprived neurons was also supported by experiments using Ca2+-channel antagonists and agonists. The Ca2+ antagonists nimodipine and nifedipine effectively blocked the survival-promoting effect of high K+. The Ca2+ agonists Bay K 8644 and (S)-202-791 did not by themselves save neurons from NGF deprivation but did strongly augment the effect of high K+; EC50 was shifted from 21 mM to 13 mM. These data suggest that dihydropyridine-sensitive L-type Ca2+ channels play a major role in the high-K+ saving. The depolarizing agents choline (EC50 = 1 mM) and carbamoylcholine (EC50 = 1 microM), acting through nicotinic cholinergic receptors, also rescued NGF-deprived neurons. The saving effect of nicotinic agonists was not blocked by withdrawal of extracellular Ca2+ but was counteracted by a chelator of intracellular Ca2+, suggesting the possible involvement of Ca2+ release from internal stores. Based on these findings we propose a "Ca2+ set-point hypothesis" for the degree of trophic-factor dependence of sympathetic neurons in vitro.

Full text

PDF
6423

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Acheson A., Barde Y. A., Thoenen H. High K+-mediated survival of spinal sensory neurons depends on developmental stage. Exp Cell Res. 1987 May;170(1):56–63. doi: 10.1016/0014-4827(87)90116-9. [DOI] [PubMed] [Google Scholar]
  2. Black I. B. Regulation of autonomic development. Annu Rev Neurosci. 1978;1:183–214. doi: 10.1146/annurev.ne.01.030178.001151. [DOI] [PubMed] [Google Scholar]
  3. Brenneman D. E., Fitzgerald S., Nelson P. G. Interaction between trophic action and electrical activity in spinal cord cultures. Brain Res. 1984 Aug;317(2):211–217. doi: 10.1016/0165-3806(84)90098-1. [DOI] [PubMed] [Google Scholar]
  4. Brown D. A., Scholfield C. N. Changes of intracellular sodium and potassium ion concentrations in isolated rat superior cervical ganglia induced by depolarizing agents. J Physiol. 1974 Oct;242(2):307–319. doi: 10.1113/jphysiol.1974.sp010709. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Choi D. W. Glutamate neurotoxicity and diseases of the nervous system. Neuron. 1988 Oct;1(8):623–634. doi: 10.1016/0896-6273(88)90162-6. [DOI] [PubMed] [Google Scholar]
  6. Cowan W. M., Fawcett J. W., O'Leary D. D., Stanfield B. B. Regressive events in neurogenesis. Science. 1984 Sep 21;225(4668):1258–1265. doi: 10.1126/science.6474175. [DOI] [PubMed] [Google Scholar]
  7. Crain S. M., Bornstein M. B., Peterson E. R. Maturation of cultured embryonic CNS tissues during chronic exposure to agents which prevent bioelectric activity. Brain Res. 1968 May;8(2):363–372. doi: 10.1016/0006-8993(68)90055-3. [DOI] [PubMed] [Google Scholar]
  8. Furber S., Oppenheim R. W., Prevette D. Naturally-occurring neuron death in the ciliary ganglion of the chick embryo following removal of preganglionic input: evidence for the role of afferents in ganglion cell survival. J Neurosci. 1987 Jun;7(6):1816–1832. doi: 10.1523/JNEUROSCI.07-06-01816.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Gottmann K., Dietzel I. D., Lux H. D., Huck S., Rohrer H. Development of inward currents in chick sensory and autonomic neuronal precursor cells in culture. J Neurosci. 1988 Oct;8(10):3722–3732. doi: 10.1523/JNEUROSCI.08-10-03722.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Hamburger V., Brunso-Bechtold J. K., Yip J. W. Neuronal death in the spinal ganglia of the chick embryo and its reduction by nerve growth factor. J Neurosci. 1981 Jan;1(1):60–71. doi: 10.1523/JNEUROSCI.01-01-00060.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Hefti F., Gnahn H., Schwab M. E., Thoenen H. Induction of tyrosine hydroxylase by nerve growth factor and by elevated K+ concentrations in cultures of dissociated sympathetic neurons. J Neurosci. 1982 Nov;2(11):1554–1566. doi: 10.1523/JNEUROSCI.02-11-01554.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Hendry I. A., Campbell J. Morphometric analysis of rat superior cervical ganglion after axotomy and nerve growth factor treatment. J Neurocytol. 1976 Jun;5(3):351–360. doi: 10.1007/BF01175120. [DOI] [PubMed] [Google Scholar]
  13. Hirning L. D., Fox A. P., McCleskey E. W., Olivera B. M., Thayer S. A., Miller R. J., Tsien R. W. Dominant role of N-type Ca2+ channels in evoked release of norepinephrine from sympathetic neurons. Science. 1988 Jan 1;239(4835):57–61. doi: 10.1126/science.2447647. [DOI] [PubMed] [Google Scholar]
  14. Johnson E. M., Jr, Gorin P. D., Brandeis L. D., Pearson J. Dorsal root ganglion neurons are destroyed by exposure in utero to maternal antibody to nerve growth factor. Science. 1980 Nov 21;210(4472):916–918. doi: 10.1126/science.7192014. [DOI] [PubMed] [Google Scholar]
  15. Johnson M. I., Argiro V. Techniques in the tissue culture of rat sympathetic neurons. Methods Enzymol. 1983;103:334–347. doi: 10.1016/s0076-6879(83)03022-0. [DOI] [PubMed] [Google Scholar]
  16. Levi-Montalcini R., Booker B. DESTRUCTION OF THE SYMPATHETIC GANGLIA IN MAMMALS BY AN ANTISERUM TO A NERVE-GROWTH PROTEIN. Proc Natl Acad Sci U S A. 1960 Mar;46(3):384–391. doi: 10.1073/pnas.46.3.384. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Lipscombe D., Madison D. V., Poenie M., Reuter H., Tsien R. W., Tsien R. Y. Imaging of cytosolic Ca2+ transients arising from Ca2+ stores and Ca2+ channels in sympathetic neurons. Neuron. 1988 Jul;1(5):355–365. doi: 10.1016/0896-6273(88)90185-7. [DOI] [PubMed] [Google Scholar]
  18. Lipton S. A. Blockade of electrical activity promotes the death of mammalian retinal ganglion cells in culture. Proc Natl Acad Sci U S A. 1986 Dec;83(24):9774–9778. doi: 10.1073/pnas.83.24.9774. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Maderdrut J. L., Oppenheim R. W., Prevette D. Enhancement of naturally occurring cell death in the sympathetic and parasympathetic ganglia of the chicken embryo following blockade of ganglionic transmission. Brain Res. 1988 Mar 15;444(1):189–194. doi: 10.1016/0006-8993(88)90928-6. [DOI] [PubMed] [Google Scholar]
  20. Martin D. P., Schmidt R. E., DiStefano P. S., Lowry O. H., Carter J. G., Johnson E. M., Jr Inhibitors of protein synthesis and RNA synthesis prevent neuronal death caused by nerve growth factor deprivation. J Cell Biol. 1988 Mar;106(3):829–844. doi: 10.1083/jcb.106.3.829. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Nishi R., Berg D. K. Effects of high K+ concentrations on the growth and development of ciliary ganglion neurons in cell culture. Dev Biol. 1981 Oct 30;87(2):301–307. doi: 10.1016/0012-1606(81)90153-6. [DOI] [PubMed] [Google Scholar]
  22. Nowycky M. C., Fox A. P., Tsien R. W. Long-opening mode of gating of neuronal calcium channels and its promotion by the dihydropyridine calcium agonist Bay K 8644. Proc Natl Acad Sci U S A. 1985 Apr;82(7):2178–2182. doi: 10.1073/pnas.82.7.2178. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Phillipson O. T., Sandler M. The influence of nerve growth factor, potassium depolarization and dibutyryl (cyclic) adenosine 3',5'-monophosphate on explant cultures of chick embryo sympathetic ganglia. Brain Res. 1975 Jun 13;90(2):273–281. doi: 10.1016/0006-8993(75)90307-8. [DOI] [PubMed] [Google Scholar]
  24. Rich K. M., Yip H. K., Osborne P. A., Schmidt R. E., Johnson E. M., Jr Role of nerve growth factor in the adult dorsal root ganglia neuron and its response to injury. J Comp Neurol. 1984 Nov 20;230(1):110–118. doi: 10.1002/cne.902300110. [DOI] [PubMed] [Google Scholar]
  25. Scott B. S., Fisher K. C. Potassium concentration and number of neurons in cultures of dissociated ganglia. Exp Neurol. 1970 Apr;27(1):16–22. doi: 10.1016/0014-4886(70)90197-4. [DOI] [PubMed] [Google Scholar]
  26. Scott B. S. The effect of elevated potassium on the time course of neuron survival in cultures of dissociated dorsal root ganglia. J Cell Physiol. 1977 May;91(2):305–316. doi: 10.1002/jcp.1040910215. [DOI] [PubMed] [Google Scholar]
  27. Thayer S. A., Hirning L. D., Miller R. J. Distribution of multiple types of Ca2+ channels in rat sympathetic neurons in vitro. Mol Pharmacol. 1987 Nov;32(5):579–586. [PubMed] [Google Scholar]
  28. Thayer S. A., Hirning L. D., Miller R. J. The role of caffeine-sensitive calcium stores in the regulation of the intracellular free calcium concentration in rat sympathetic neurons in vitro. Mol Pharmacol. 1988 Nov;34(5):664–673. [PubMed] [Google Scholar]
  29. Ulus I. H., Millington W. R., Buyukuysal R. L., Kiran B. K. Choline as an agonist: determination of its agonistic potency on cholinergic receptors. Biochem Pharmacol. 1988 Jul 15;37(14):2747–2755. doi: 10.1016/0006-2952(88)90037-8. [DOI] [PubMed] [Google Scholar]
  30. Wakade A. R., Thoenen H. Interchangeability of nerve growth factor and high potassium in the long-term survival of chick sympathetic neurons in serum-free culture medium. Neurosci Lett. 1984 Mar 9;45(1):71–74. doi: 10.1016/0304-3940(84)90331-8. [DOI] [PubMed] [Google Scholar]
  31. Wanke E., Ferroni A., Malgaroli A., Ambrosini A., Pozzan T., Meldolesi J. Activation of a muscarinic receptor selectively inhibits a rapidly inactivated Ca2+ current in rat sympathetic neurons. Proc Natl Acad Sci U S A. 1987 Jun;84(12):4313–4317. doi: 10.1073/pnas.84.12.4313. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES