Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1989 Sep;86(18):6959–6962. doi: 10.1073/pnas.86.18.6959

Photogating of ionic currents across a lipid bilayer.

C M Drain 1, B Christensen 1, D Mauzerall 1
PMCID: PMC297971  PMID: 2476808

Abstract

Photoformation of metalloporphyrin cations in a lipid bilayer increases the ionic currents of negative and decreases those of positive hydrophobic ions. At low concentrations of the mobile hydrophobic ion, a 30% change in conductivity is observed that decreases with increasing concentration of positive tetraphenylphosphonium ion and increases drastically with increasing concentration of negative tetraphenylboride ion. In the region of saturated conductance of boride ion, the increase in conductivity is 3.6-fold. A 15-fold increase is observed with the protonophore carbonyl cyanide 3-chlorophenylhydrazone. In this case the net charge gated is 300 times greater than the photogenerated charge in the bilayer membrane. Thus there is a net gain in this organic field effect phototransistor. The gating can also be accomplished by continuous light or chemical oxidants. Photogating is explained as space charge effects inside the bilayer.

Full text

PDF
6962

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Andersen O. S., Feldberg S., Nakadomari H., Levy S., McLaughlin S. Electrostatic interactions among hydrophobic ions in lipid bilayer membranes. Biophys J. 1978 Jan;21(1):35–70. doi: 10.1016/S0006-3495(78)85507-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Braun H. P. The transport of hydrophobic ions across lipid bilayers. Biochim Biophys Acta. 1987 Oct 2;903(2):292–302. doi: 10.1016/0005-2736(87)90219-7. [DOI] [PubMed] [Google Scholar]
  3. De Levie R., Seidah N. G., Moreira H. Transport of ions of one kind through thin membranes. II. Nonequilibrium steady-state behavior. J Membr Biol. 1972;10(2):171–192. doi: 10.1007/BF01867852. [DOI] [PubMed] [Google Scholar]
  4. Flewelling R. F., Hubbell W. L. The membrane dipole potential in a total membrane potential model. Applications to hydrophobic ion interactions with membranes. Biophys J. 1986 Feb;49(2):541–552. doi: 10.1016/S0006-3495(86)83664-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Haydon D. A., Hladky S. B. Ion transport across thin lipid membranes: a critical discussion of mechanisms in selected systems. Q Rev Biophys. 1972 May;5(2):187–282. doi: 10.1017/s0033583500000883. [DOI] [PubMed] [Google Scholar]
  6. Hong F. T. Charge transfer across pigmented bilayer lipid membrane and its interfaces. Photochem Photobiol. 1976 Aug;24(2):155–189. doi: 10.1111/j.1751-1097.1976.tb06809.x. [DOI] [PubMed] [Google Scholar]
  7. Le Blanc O. H., Jr Tetraphenylborate conductance through lipid bilayer membranes. Biochim Biophys Acta. 1969;193(2):350–360. doi: 10.1016/0005-2736(69)90195-3. [DOI] [PubMed] [Google Scholar]
  8. Läuger P., Benz R., Stark G., Bamberg E., Jordan P. C., Fahr A., Brock W. Relaxation studies of ion transport systems in lipid bilayer membranes. Q Rev Biophys. 1981 Nov;14(4):513–598. doi: 10.1017/s003358350000247x. [DOI] [PubMed] [Google Scholar]
  9. Parsegian A. Energy of an ion crossing a low dielectric membrane: solutions to four relevant electrostatic problems. Nature. 1969 Mar 1;221(5183):844–846. doi: 10.1038/221844a0. [DOI] [PubMed] [Google Scholar]
  10. Pickar A. D., Hobbs J. The influence of sterols on pentachlorophenol-induced charge transfer across lipid bilayers studied by alternating current methods. Biochim Biophys Acta. 1982 Dec 8;693(1):221–236. doi: 10.1016/0005-2736(82)90490-4. [DOI] [PubMed] [Google Scholar]
  11. Pullman A. Energy profiles in the gramicidin A channel. Q Rev Biophys. 1987 Nov;20(3-4):173–200. doi: 10.1017/s0033583500004170. [DOI] [PubMed] [Google Scholar]
  12. Raudino A., Mauzerall D. Dielectric properties of the polar head group region of zwitterionic lipid bilayers. Biophys J. 1986 Sep;50(3):441–449. doi: 10.1016/S0006-3495(86)83480-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Woodle M. C., Mauzerall D. Photoinitiated ion movements in bilayer membranes containing magnesium octaethylporphyrin. Biophys J. 1986 Sep;50(3):431–439. doi: 10.1016/S0006-3495(86)83479-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Woodle M., Zhang J. W., Mauzerall D. Kinetics of charge transfer at the lipid bilayer-water interface on the nanosecond time scale. Biophys J. 1987 Oct;52(4):577–586. doi: 10.1016/S0006-3495(87)83247-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. de Levie R., Seidah N. G. Transport of ions of one kind through thin membranes. 3. Current-voltage curves for membrane-soluble ions. J Membr Biol. 1974;16(1):1–16. doi: 10.1007/BF01872404. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES