Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1989 Sep;86(18):6982–6986. doi: 10.1073/pnas.86.18.6982

Efficient gene transfer into mammalian primary endocrine cells with lipopolyamine-coated DNA.

J P Behr 1, B Demeneix 1, J P Loeffler 1, J Perez-Mutul 1
PMCID: PMC297976  PMID: 2780554

Abstract

A general and efficient transfection procedure, based on compacted lipopolyamine-coated plasmids, has been developed. The active species is obtained by simple addition of excess synthetic lipospermine solution to the DNA and binds within minutes to the cell membrane. This technique has been developed on endocrine cells of the intermediate lobe of the pituitary as a general tool for physiological work on primary cells; it is not toxic and does not interfere with physiological regulations in melanotrope cells. A variety of eukaryotic cell cultures also have been transfected with success for transient and stable expression.

Full text

PDF
6986

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Appel J. D., Fasy T. M., Kohtz D. S., Kohtz J. D., Johnson E. M. Asbestos fibers mediate transformation of monkey cells by exogenous plasmid DNA. Proc Natl Acad Sci U S A. 1988 Oct;85(20):7670–7674. doi: 10.1073/pnas.85.20.7670. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Braunlin W. H., Strick T. J., Record M. T., Jr Equilibrium dialysis studies of polyamine binding to DNA. Biopolymers. 1982 Jul;21(7):1301–1314. doi: 10.1002/bip.360210704. [DOI] [PubMed] [Google Scholar]
  3. Chen C., Okayama H. High-efficiency transformation of mammalian cells by plasmid DNA. Mol Cell Biol. 1987 Aug;7(8):2745–2752. doi: 10.1128/mcb.7.8.2745. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Demeneix B. A., Taleb O., Loeffler J. P., Feltz P. GABAA and GABAB receptors on porcine pars intermedia cells in primary culture: functional role in modulating peptide release. Neuroscience. 1986 Apr;17(4):1275–1285. doi: 10.1016/0306-4522(86)90094-1. [DOI] [PubMed] [Google Scholar]
  5. Felgner P. L., Gadek T. R., Holm M., Roman R., Chan H. W., Wenz M., Northrop J. P., Ringold G. M., Danielsen M. Lipofection: a highly efficient, lipid-mediated DNA-transfection procedure. Proc Natl Acad Sci U S A. 1987 Nov;84(21):7413–7417. doi: 10.1073/pnas.84.21.7413. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Fraley R., Papahadjopoulos D. Liposomes: the development of a new carrier system for introducing nucleic acid into plant and animal cells. Curr Top Microbiol Immunol. 1982;96:171–191. doi: 10.1007/978-3-642-68315-2_11. [DOI] [PubMed] [Google Scholar]
  7. Gorman C. M., Moffat L. F., Howard B. H. Recombinant genomes which express chloramphenicol acetyltransferase in mammalian cells. Mol Cell Biol. 1982 Sep;2(9):1044–1051. doi: 10.1128/mcb.2.9.1044. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Graham F. L., van der Eb A. J. A new technique for the assay of infectivity of human adenovirus 5 DNA. Virology. 1973 Apr;52(2):456–467. doi: 10.1016/0042-6822(73)90341-3. [DOI] [PubMed] [Google Scholar]
  9. Klein-Hitpass L., Schorpp M., Wagner U., Ryffel G. U. An estrogen-responsive element derived from the 5' flanking region of the Xenopus vitellogenin A2 gene functions in transfected human cells. Cell. 1986 Sep 26;46(7):1053–1061. doi: 10.1016/0092-8674(86)90705-1. [DOI] [PubMed] [Google Scholar]
  10. Loeffler J. P., Demeneix B. A., Kley N. A., Höllt V. Dopamine inhibition of proopiomelanocortin gene expression in the intermediate lobe of the pituitary. Interactions with corticotropin-releasing factor and the beta-adrenergic receptors and the adenylate cyclase system. Neuroendocrinology. 1988 Feb;47(2):95–101. doi: 10.1159/000124898. [DOI] [PubMed] [Google Scholar]
  11. Loeffler J. P., Kley N., Louis J. C., Demeneix B. A. Ca2+ regulates hormone secretion and proopiomelanocortin gene expression in melanotrope cells via the calmodulin and the protein kinase C pathways. J Neurochem. 1989 Apr;52(4):1279–1283. doi: 10.1111/j.1471-4159.1989.tb01876.x. [DOI] [PubMed] [Google Scholar]
  12. Loeffler J. P., Kley N., Pittius C. W., Höllt V. Calcium ion and cyclic adenosine 3',5'-monophosphate regulate proopiomelanocortin messenger ribonucleic acid levels in rat intermediate and anterior pituitary lobes. Endocrinology. 1986 Dec;119(6):2840–2847. doi: 10.1210/endo-119-6-2840. [DOI] [PubMed] [Google Scholar]
  13. Machy P., Lewis F., McMillan L., Jonak Z. L. Gene transfer from targeted liposomes to specific lymphoid cells by electroporation. Proc Natl Acad Sci U S A. 1988 Nov;85(21):8027–8031. doi: 10.1073/pnas.85.21.8027. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Nicolau C., Legrand A., Grosse E. Liposomes as carriers for in vivo gene transfer and expression. Methods Enzymol. 1987;149:157–176. doi: 10.1016/0076-6879(87)49054-x. [DOI] [PubMed] [Google Scholar]
  15. Ohtani K., Nakamura M., Saito S., Nagata K., Sugamura K., Hinuma Y. Electroporation: application to human lymphoid cell lines for stable introduction of a transactivator gene of human T-cell leukemia virus type I. Nucleic Acids Res. 1989 Feb 25;17(4):1589–1604. doi: 10.1093/nar/17.4.1589. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Pagano J. S. Biologic activity of isolated viral nucleic acids. Prog Med Virol. 1970;12:1–48. [PubMed] [Google Scholar]
  17. Wang C. Y., Huang L. pH-sensitive immunoliposomes mediate target-cell-specific delivery and controlled expression of a foreign gene in mouse. Proc Natl Acad Sci U S A. 1987 Nov;84(22):7851–7855. doi: 10.1073/pnas.84.22.7851. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES