Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1989 Oct;86(20):7937–7941. doi: 10.1073/pnas.86.20.7937

Traveling waves of in vitro evolving RNA.

G J Bauer 1, J S McCaskill 1, H Otten 1
PMCID: PMC298187  PMID: 2479013

Abstract

Populations of short self-replicating RNA variants have been confined to one side of a reaction-diffusion traveling wave front propagating along thin capillary tubes containing the Q beta viral enzyme. The propagation speed is accurately measurable with a magnitude of about 1 micron/sec, and the wave persists for hundreds of generations (of duration less than 1 min). Evolution of RNA occurs in the wavefront, as established by front velocity changes and gel electrophoresis of samples drawn from along the capillary. The high population numbers (approximately equal to 10(11], their well-characterized biochemistry, their short generation time, and the constant conditions make the system ideal for evolution experiments. Growth is monitored continuously by excitation of an added RNA-sensitive fluorescent dye, ethidium bromide. An analytic expression for the front velocity is derived for the multicomponent kinetic scheme that reduces, for a high RNA-enzyme binding constant, to the Fisher form v = 2 square root of kappa D, where D is the diffusion constant of the complex and kappa is the low-concentration overall replication rate coefficient. The latter is confirmed as the selective value-determining parameter by numerical solution of a two-species system.

Full text

PDF
7938

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aoki K. Gene-culture waves of advance. J Math Biol. 1987;25(5):453–464. doi: 10.1007/BF00276192. [DOI] [PubMed] [Google Scholar]
  2. Biebricher C. K., Diekmann S., Luce R. Structural analysis of self-replicating RNA synthesized by Qbeta replicase. J Mol Biol. 1982 Feb 5;154(4):629–648. doi: 10.1016/s0022-2836(82)80019-3. [DOI] [PubMed] [Google Scholar]
  3. Biebricher C. K., Eigen M., Gardiner W. C., Jr Kinetics of RNA replication. Biochemistry. 1983 May 10;22(10):2544–2559. doi: 10.1021/bi00279a036. [DOI] [PubMed] [Google Scholar]
  4. Biebricher C. K., Eigen M., Gardiner W. C., Jr Kinetics of RNA replication: competition and selection among self-replicating RNA species. Biochemistry. 1985 Nov 5;24(23):6550–6560. doi: 10.1021/bi00344a037. [DOI] [PubMed] [Google Scholar]
  5. Biebricher C. K., Eigen M., Gardiner W. C., Jr Kinetics of RNA replication: plus-minus asymmetry and double-strand formation. Biochemistry. 1984 Jul 3;23(14):3186–3194. doi: 10.1021/bi00309a012. [DOI] [PubMed] [Google Scholar]
  6. Biebricher C. K., Eigen M., Luce R. Kinetic analysis of template-instructed and de novo RNA synthesis by Q beta replicase. J Mol Biol. 1981 Jun 5;148(4):391–410. doi: 10.1016/0022-2836(81)90183-2. [DOI] [PubMed] [Google Scholar]
  7. Eigen M. Selforganization of matter and the evolution of biological macromolecules. Naturwissenschaften. 1971 Oct;58(10):465–523. doi: 10.1007/BF00623322. [DOI] [PubMed] [Google Scholar]
  8. Kamen R. A new method for the purification of Q RNA-dependent RNA polymerase. Biochim Biophys Acta. 1972 Feb 23;262(1):88–100. doi: 10.1016/0005-2787(72)90221-3. [DOI] [PubMed] [Google Scholar]
  9. Le Pecq J. B. Use of ethidium bromide for separation and determination of nucleic acids of various conformational forms and measurement of their associated enzymes. Methods Biochem Anal. 1971;20:41–86. doi: 10.1002/9780470110393.ch2. [DOI] [PubMed] [Google Scholar]
  10. Mills D. R., Peterson R. L., Spiegelman S. An extracellular Darwinian experiment with a self-duplicating nucleic acid molecule. Proc Natl Acad Sci U S A. 1967 Jul;58(1):217–224. doi: 10.1073/pnas.58.1.217. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Olson T., Fournier M. J., Langley K. H., Ford N. C., Jr Detection of a major conformational change in transfer ribonucleic acid by laser light scattering. J Mol Biol. 1976 Apr 5;102(2):193–203. doi: 10.1016/s0022-2836(76)80048-4. [DOI] [PubMed] [Google Scholar]
  12. Schneider F. W. Stability of steady states in nucleic acid poly (A-T) synthesis and the stirred flow reactor. Biopolymers. 1976 Jan;15(1):1–14. doi: 10.1002/bip.1976.360150102. [DOI] [PubMed] [Google Scholar]
  13. Sumper M., Luce R. Evidence for de novo production of self-replicating and environmentally adapted RNA structures by bacteriophage Qbeta replicase. Proc Natl Acad Sci U S A. 1975 Jan;72(1):162–166. doi: 10.1073/pnas.72.1.162. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Tao T., Nelson J. H., Cantor C. R. Conformational studies on transfer ribonucleic acid. Fluorescence lifetime and nanosecond depolarization measurements on bound ethidium bromidee. Biochemistry. 1970 Sep 1;9(18):3514–3524. doi: 10.1021/bi00820a004. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES