Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2010 Feb 13;66(Pt 3):o620. doi: 10.1107/S1600536810005386

Meranzin hydrate from Muraya paniculata

Euis Julaeha a, Unang Supratman a, Mat Ropi Mukhtar b, Khalijah Awang b, Seik Weng Ng b,*
PMCID: PMC2983667  PMID: 21580378

Abstract

The coumarin ring system in the title compound, C15H18O5 [IUPAC name: 8-(2,3-dihydr­oxy-3-methyl­butyl)-7-meth­oxy-2H-1-benzopyran-2-one], isolated from Muraya paniculata, is planar (r.m.s. deviation 0.017 Å). In the crystal, the two hydr­oxy groups are involved in O—H⋯O hydrogen bonding with adjacent mol­ecules, forming a sheet structure.

Related literature

For the asymmetric synthesis and absolute configuration of meranzin hydrate, see: Grundon & McColl (1975).graphic file with name e-66-0o620-scheme1.jpg

Experimental

Crystal data

  • C15H18O5

  • M r = 278.29

  • Monoclinic, Inline graphic

  • a = 5.8061 (7) Å

  • b = 10.5146 (13) Å

  • c = 11.4477 (14) Å

  • β = 91.547 (2)°

  • V = 698.61 (15) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 293 K

  • 0.35 × 0.15 × 0.15 mm

Data collection

  • Bruker SMART APEX diffractometer

  • 6694 measured reflections

  • 1699 independent reflections

  • 1338 reflections with I > 2σ(I)

  • R int = 0.040

Refinement

  • R[F 2 > 2σ(F 2)] = 0.038

  • wR(F 2) = 0.102

  • S = 1.00

  • 1699 reflections

  • 192 parameters

  • 3 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.12 e Å−3

  • Δρmin = −0.16 e Å−3

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2010).

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810005386/bt5194sup1.cif

e-66-0o620-sup1.cif (17.3KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810005386/bt5194Isup2.hkl

e-66-0o620-Isup2.hkl (83.7KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O4—H4⋯O2i 0.84 (1) 2.01 (1) 2.842 (3) 169 (5)
O5—H5⋯O2ii 0.85 (1) 2.12 (2) 2.936 (3) 163 (4)

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

This work was supported by the Directorate General of Higher Education, Ministry of National Education, Indonesia (BPPS-Doctoral Program), the I-MHERE Project of Padjadjaran University, the Science Fund of Malaysia (12-02-03-2063) and the University of Malaya.

supplementary crystallographic information

Comment

Muraya paniculata (Rutaceae, known as kemuning in Indonesia) is a perennial herb having succulent leaves. The plant is used for the treatment of orchitis, bronchitis and urine infections.

Experimental

M. paniculata was collected in from Bandung, Indonesia. The plant was identified by the Department of Biology of Padjadjaran University. The dried leaves of M. paniculata (4 kg) was extracted exhaustively by methanol at room temperature and then concentrated to yield a methanol extract (438 g); 200 g was partitioned between n-hexane and methanol containing 10% water. The aqueous extract was extracted with ethyl acetate. The ethyl acetate portion was removed and subjected to column chromatography on silica gel 60 by using a step gradient of n-hexane–ethyl acetate–methanol. The fraction eluted by n-hexane/ethyl acetate (1:4) was further separated by column chromatography on silica gel (chloroform:ethyl acetate 1:1) to give meranzin hydrate, 8-[2,3-dihydroxy-3-methylbutyl]-7-methoxy-2H-1-benzopyran-2-one (12 mg).

Refinement

Carbon-bound H atoms were placed in calculated positions (C—H 0.93 to 0.97 Å) and were included in the refinement in the riding model approximation, with U(H) set to 1.2 to 1.5U(C).

The oxygen-bound H atoms were located in a difference Fourier map, and were refined isotropically with a distance restraint of O—H 0.84 (1) Å.

In the absence of anomalous scatterers, Friedel pairs were merged. The absolute configuration was set to match the one determined by the asymmetric synthesis of meranzin (Grundon & McColl, 1975).

Figures

Fig. 1.

Fig. 1.

Anisotropic displacement ellipsoid plot (Barbour, 2001) of C15H18O5; at the 50% probability level; hydrogen atoms are drawn as spheres of arbitrary radius.

Crystal data

C15H18O5 F(000) = 296
Mr = 278.29 Dx = 1.323 Mg m3
Monoclinic, P21 Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2yb Cell parameters from 1731 reflections
a = 5.8061 (7) Å θ = 2.6–22.3°
b = 10.5146 (13) Å µ = 0.10 mm1
c = 11.4477 (14) Å T = 293 K
β = 91.547 (2)° Prism, colourless
V = 698.61 (15) Å3 0.35 × 0.15 × 0.15 mm
Z = 2

Data collection

Bruker SMART APEX diffractometer 1338 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tube Rint = 0.040
graphite θmax = 27.5°, θmin = 1.8°
ω scans h = −7→7
6694 measured reflections k = −11→13
1699 independent reflections l = −14→14

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.102 H atoms treated by a mixture of independent and constrained refinement
S = 1.00 w = 1/[σ2(Fo2) + (0.0603P)2] where P = (Fo2 + 2Fc2)/3
1699 reflections (Δ/σ)max = 0.001
192 parameters Δρmax = 0.12 e Å3
3 restraints Δρmin = −0.16 e Å3

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 1.4383 (3) 0.50000 (16) 0.83522 (15) 0.0436 (4)
O2 1.7272 (3) 0.51296 (19) 0.96204 (18) 0.0592 (5)
O3 0.8098 (4) 0.4410 (2) 0.57958 (18) 0.0677 (6)
O4 1.0213 (3) 0.30444 (18) 0.91374 (15) 0.0500 (5)
O5 1.1435 (3) 0.06759 (16) 0.79342 (17) 0.0490 (4)
C1 1.5866 (4) 0.5712 (3) 0.9034 (2) 0.0461 (6)
C2 1.5618 (5) 0.7069 (3) 0.8999 (3) 0.0553 (7)
H2 1.6632 0.7576 0.9436 0.066*
C3 1.3954 (5) 0.7612 (3) 0.8350 (3) 0.0567 (7)
H3 1.3813 0.8493 0.8345 0.068*
C4 1.2374 (5) 0.6858 (2) 0.7657 (2) 0.0476 (6)
C5 1.0585 (5) 0.7350 (3) 0.6972 (3) 0.0596 (8)
H5A 1.0373 0.8226 0.6939 0.071*
C6 0.9124 (5) 0.6572 (3) 0.6344 (3) 0.0610 (8)
H6 0.7931 0.6918 0.5888 0.073*
C7 0.9433 (5) 0.5268 (3) 0.6391 (2) 0.0513 (7)
C8 1.1185 (4) 0.4708 (2) 0.7080 (2) 0.0415 (5)
C9 1.2625 (4) 0.5534 (2) 0.7693 (2) 0.0400 (5)
C10 0.6251 (5) 0.4863 (4) 0.5056 (3) 0.0792 (11)
H10A 0.5429 0.4153 0.4723 0.119*
H10B 0.6864 0.5372 0.4442 0.119*
H10C 0.5222 0.5367 0.5507 0.119*
C11 1.1382 (4) 0.3280 (2) 0.7160 (2) 0.0419 (5)
H11A 1.2906 0.3052 0.7459 0.050*
H11B 1.1181 0.2912 0.6387 0.050*
C12 0.9563 (4) 0.2742 (2) 0.79647 (19) 0.0388 (5)
H12 0.8090 0.3159 0.7777 0.047*
C13 0.9231 (4) 0.1295 (2) 0.7838 (2) 0.0406 (5)
C14 0.7685 (5) 0.0804 (3) 0.8780 (3) 0.0628 (8)
H14A 0.7520 −0.0100 0.8704 0.094*
H14B 0.6199 0.1200 0.8700 0.094*
H14C 0.8354 0.1002 0.9534 0.094*
C15 0.8225 (5) 0.0987 (3) 0.6642 (3) 0.0628 (8)
H15A 0.7866 0.0096 0.6600 0.094*
H15B 0.9324 0.1193 0.6059 0.094*
H15C 0.6846 0.1474 0.6505 0.094*
H4 0.935 (6) 0.363 (3) 0.937 (4) 0.119 (17)*
H5 1.183 (6) 0.068 (4) 0.8650 (12) 0.089 (12)*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0453 (9) 0.0336 (9) 0.0515 (10) 0.0040 (7) −0.0063 (7) −0.0039 (7)
O2 0.0526 (10) 0.0556 (12) 0.0683 (12) 0.0103 (9) −0.0159 (9) −0.0154 (10)
O3 0.0719 (13) 0.0715 (15) 0.0581 (12) −0.0035 (11) −0.0275 (10) 0.0085 (11)
O4 0.0630 (11) 0.0466 (11) 0.0400 (9) 0.0096 (9) −0.0081 (8) −0.0065 (8)
O5 0.0460 (9) 0.0389 (10) 0.0616 (12) 0.0071 (7) −0.0058 (8) −0.0042 (9)
C1 0.0428 (12) 0.0441 (15) 0.0512 (14) 0.0015 (11) −0.0013 (11) −0.0098 (12)
C2 0.0581 (15) 0.0403 (15) 0.0676 (18) −0.0087 (12) −0.0002 (14) −0.0088 (13)
C3 0.0722 (17) 0.0299 (13) 0.0683 (18) −0.0035 (13) 0.0078 (15) −0.0034 (12)
C4 0.0567 (14) 0.0356 (14) 0.0508 (15) 0.0018 (12) 0.0047 (12) 0.0054 (12)
C5 0.0716 (18) 0.0427 (16) 0.0645 (18) 0.0122 (14) 0.0013 (15) 0.0140 (14)
C6 0.0656 (17) 0.0572 (19) 0.0599 (17) 0.0137 (14) −0.0073 (14) 0.0186 (15)
C7 0.0573 (15) 0.0544 (17) 0.0416 (14) 0.0014 (13) −0.0065 (12) 0.0098 (13)
C8 0.0475 (12) 0.0371 (12) 0.0398 (13) 0.0011 (10) −0.0002 (10) 0.0037 (10)
C9 0.0450 (12) 0.0345 (13) 0.0406 (13) 0.0035 (10) 0.0023 (10) 0.0042 (10)
C10 0.0586 (16) 0.114 (3) 0.0636 (19) 0.001 (2) −0.0203 (15) 0.016 (2)
C11 0.0447 (12) 0.0353 (12) 0.0455 (13) −0.0001 (10) −0.0016 (10) −0.0042 (11)
C12 0.0402 (10) 0.0373 (12) 0.0384 (12) 0.0051 (10) −0.0072 (9) −0.0023 (10)
C13 0.0373 (10) 0.0343 (12) 0.0499 (13) −0.0004 (10) −0.0055 (9) −0.0011 (11)
C14 0.0524 (15) 0.0546 (17) 0.082 (2) −0.0116 (13) 0.0071 (14) 0.0101 (16)
C15 0.0668 (17) 0.0530 (17) 0.0672 (18) −0.0063 (14) −0.0239 (14) −0.0130 (15)

Geometric parameters (Å, °)

O1—C1 1.369 (3) C7—C8 1.400 (3)
O1—C9 1.373 (3) C8—C9 1.383 (3)
O2—C1 1.209 (3) C8—C11 1.509 (3)
O3—C7 1.361 (3) C10—H10A 0.9600
O3—C10 1.430 (3) C10—H10B 0.9600
O4—C12 1.421 (3) C10—H10C 0.9600
O4—H4 0.840 (10) C11—C12 1.529 (3)
O5—C13 1.437 (3) C11—H11A 0.9700
O5—H5 0.846 (10) C11—H11B 0.9700
C1—C2 1.434 (4) C12—C13 1.540 (3)
C2—C3 1.332 (4) C12—H12 0.9800
C2—H2 0.9300 C13—C15 1.510 (4)
C3—C4 1.434 (4) C13—C14 1.512 (4)
C3—H3 0.9300 C14—H14A 0.9600
C4—C5 1.384 (4) C14—H14B 0.9600
C4—C9 1.401 (3) C14—H14C 0.9600
C5—C6 1.369 (4) C15—H15A 0.9600
C5—H5A 0.9300 C15—H15B 0.9600
C6—C7 1.383 (4) C15—H15C 0.9600
C6—H6 0.9300
C1—O1—C9 122.44 (19) O3—C10—H10C 109.5
C7—O3—C10 118.9 (3) H10A—C10—H10C 109.5
C12—O4—H4 109 (3) H10B—C10—H10C 109.5
C13—O5—H5 107 (3) C8—C11—C12 110.6 (2)
O2—C1—O1 116.4 (2) C8—C11—H11A 109.5
O2—C1—C2 125.8 (3) C12—C11—H11A 109.5
O1—C1—C2 117.9 (2) C8—C11—H11B 109.5
C3—C2—C1 120.8 (3) C12—C11—H11B 109.5
C3—C2—H2 119.6 H11A—C11—H11B 108.1
C1—C2—H2 119.6 O4—C12—C11 108.45 (18)
C2—C3—C4 121.0 (2) O4—C12—C13 109.84 (19)
C2—C3—H3 119.5 C11—C12—C13 113.30 (19)
C4—C3—H3 119.5 O4—C12—H12 108.4
C5—C4—C9 117.6 (3) C11—C12—H12 108.4
C5—C4—C3 124.4 (3) C13—C12—H12 108.4
C9—C4—C3 118.0 (2) O5—C13—C15 107.1 (2)
C6—C5—C4 121.3 (3) O5—C13—C14 109.6 (2)
C6—C5—H5A 119.3 C15—C13—C14 110.5 (2)
C4—C5—H5A 119.3 O5—C13—C12 109.36 (17)
C5—C6—C7 119.6 (3) C15—C13—C12 110.0 (2)
C5—C6—H6 120.2 C14—C13—C12 110.2 (2)
C7—C6—H6 120.2 C13—C14—H14A 109.5
O3—C7—C6 124.5 (2) C13—C14—H14B 109.5
O3—C7—C8 113.5 (2) H14A—C14—H14B 109.5
C6—C7—C8 122.0 (3) C13—C14—H14C 109.5
C9—C8—C7 116.2 (2) H14A—C14—H14C 109.5
C9—C8—C11 123.4 (2) H14B—C14—H14C 109.5
C7—C8—C11 120.4 (2) C13—C15—H15A 109.5
O1—C9—C8 116.90 (19) C13—C15—H15B 109.5
O1—C9—C4 119.8 (2) H15A—C15—H15B 109.5
C8—C9—C4 123.3 (2) C13—C15—H15C 109.5
O3—C10—H10A 109.5 H15A—C15—H15C 109.5
O3—C10—H10B 109.5 H15B—C15—H15C 109.5
H10A—C10—H10B 109.5
C9—O1—C1—O2 176.4 (2) C1—O1—C9—C4 3.2 (3)
C9—O1—C1—C2 −3.2 (4) C7—C8—C9—O1 −178.6 (2)
O2—C1—C2—C3 −177.7 (3) C11—C8—C9—O1 3.6 (3)
O1—C1—C2—C3 1.9 (4) C7—C8—C9—C4 0.8 (4)
C1—C2—C3—C4 −0.6 (5) C11—C8—C9—C4 −177.1 (3)
C2—C3—C4—C5 179.2 (3) C5—C4—C9—O1 179.5 (2)
C2—C3—C4—C9 0.5 (4) C3—C4—C9—O1 −1.8 (4)
C9—C4—C5—C6 −0.6 (4) C5—C4—C9—C8 0.1 (4)
C3—C4—C5—C6 −179.2 (3) C3—C4—C9—C8 178.9 (2)
C4—C5—C6—C7 0.0 (5) C9—C8—C11—C12 101.1 (3)
C10—O3—C7—C6 0.6 (4) C7—C8—C11—C12 −76.7 (3)
C10—O3—C7—C8 −179.7 (2) C8—C11—C12—O4 −73.0 (2)
C5—C6—C7—O3 −179.4 (3) C8—C11—C12—C13 164.76 (19)
C5—C6—C7—C8 1.0 (5) O4—C12—C13—O5 −70.5 (2)
O3—C7—C8—C9 179.0 (2) C11—C12—C13—O5 51.0 (2)
C6—C7—C8—C9 −1.3 (4) O4—C12—C13—C15 172.2 (2)
O3—C7—C8—C11 −3.1 (4) C11—C12—C13—C15 −66.4 (3)
C6—C7—C8—C11 176.6 (3) O4—C12—C13—C14 50.0 (2)
C1—O1—C9—C8 −177.4 (2) C11—C12—C13—C14 171.5 (2)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
O4—H4···O2i 0.84 (1) 2.01 (1) 2.842 (3) 169 (5)
O5—H5···O2ii 0.85 (1) 2.12 (2) 2.936 (3) 163 (4)

Symmetry codes: (i) x−1, y, z; (ii) −x+3, y−1/2, −z+2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT5194).

References

  1. Barbour, L. J. (2001). J. Supramol. Chem.1, 189–191.
  2. Bruker (2008). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Grundon, M. F. & McColl, I. S. (1975). Phytochemistry, 14, 143–150.
  4. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  5. Westrip, S. P. (2010). publCIF In preparation.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810005386/bt5194sup1.cif

e-66-0o620-sup1.cif (17.3KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810005386/bt5194Isup2.hkl

e-66-0o620-Isup2.hkl (83.7KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES