Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1989 Nov;86(22):8902–8906. doi: 10.1073/pnas.86.22.8902

DNA fingerprinting by sampled sequencing.

S Brenner 1, K J Livak 1
PMCID: PMC298398  PMID: 2554336

Abstract

We describe a method for characterizing DNA segments that combines limited sequencing with size separation of restriction fragments. As part of a multistep procedure, 5' overhangs of unknown sequence are generated by cleavage with a class IIS restriction enzyme. After labeling of these ends by using dideoxynucleotides tagged with distinctive fluorescent dyes, the restriction fragments are analyzed by polyacrylamide gel electrophoresis and detection of fluorescent emissions using a commercially available DNA sequencer. The nucleotide-specific fluorescent signatures permit determination of the terminal sequence for each labeled end. The set of labeled fragments, characterized by both size and terminal sequence, constitutes a fingerprint that can be used to compare DNA segments for overlap or relatedness. The inclusion of terminal sequence data dramatically increases the information content of the fingerprint, making comparisons more reliable and efficient than those based upon size alone.

Full text

PDF
8903

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Birkmeyer R. C., Diaco R., Hutson D. K., Lau H. P., Miller W. K., Neelkantan N. V., Pankratz T. J., Tseng S. Y., Vickery D. K., Yang E. K. Application of novel chromium dioxide magnetic particles to immunoassay development. Clin Chem. 1987 Sep;33(9):1543–1547. [PubMed] [Google Scholar]
  2. Birnboim H. C., Doly J. A rapid alkaline extraction procedure for screening recombinant plasmid DNA. Nucleic Acids Res. 1979 Nov 24;7(6):1513–1523. doi: 10.1093/nar/7.6.1513. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Carrano A. V., Lamerdin J., Ashworth L. K., Watkins B., Branscomb E., Slezak T., Raff M., de Jong P. J., Keith D., McBride L. A high-resolution, fluorescence-based, semiautomated method for DNA fingerprinting. Genomics. 1989 Feb;4(2):129–136. doi: 10.1016/0888-7543(89)90291-7. [DOI] [PubMed] [Google Scholar]
  4. Coulson A., Sulston J., Brenner S., Karn J. Toward a physical map of the genome of the nematode Caenorhabditis elegans. Proc Natl Acad Sci U S A. 1986 Oct;83(20):7821–7825. doi: 10.1073/pnas.83.20.7821. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Daniels D. L., Blattner F. R. Mapping using gene encyclopaedias. 1987 Feb 26-Mar 4Nature. 325(6107):831–832. doi: 10.1038/325831a0. [DOI] [PubMed] [Google Scholar]
  6. Kohara Y., Akiyama K., Isono K. The physical map of the whole E. coli chromosome: application of a new strategy for rapid analysis and sorting of a large genomic library. Cell. 1987 Jul 31;50(3):495–508. doi: 10.1016/0092-8674(87)90503-4. [DOI] [PubMed] [Google Scholar]
  7. Lander E. S., Waterman M. S. Genomic mapping by fingerprinting random clones: a mathematical analysis. Genomics. 1988 Apr;2(3):231–239. doi: 10.1016/0888-7543(88)90007-9. [DOI] [PubMed] [Google Scholar]
  8. Olson M. V., Dutchik J. E., Graham M. Y., Brodeur G. M., Helms C., Frank M., MacCollin M., Scheinman R., Frank T. Random-clone strategy for genomic restriction mapping in yeast. Proc Natl Acad Sci U S A. 1986 Oct;83(20):7826–7830. doi: 10.1073/pnas.83.20.7826. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Prober J. M., Trainor G. L., Dam R. J., Hobbs F. W., Robertson C. W., Zagursky R. J., Cocuzza A. J., Jensen M. A., Baumeister K. A system for rapid DNA sequencing with fluorescent chain-terminating dideoxynucleotides. Science. 1987 Oct 16;238(4825):336–341. doi: 10.1126/science.2443975. [DOI] [PubMed] [Google Scholar]
  10. Robbins A. K., Ryan J. P., Whealy M. E., Enquist L. W. The gene encoding the gIII envelope protein of pseudorabies virus vaccine strain Bartha contains a mutation affecting protein localization. J Virol. 1989 Jan;63(1):250–258. doi: 10.1128/jvi.63.1.250-258.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Sanger F., Coulson A. R., Friedmann T., Air G. M., Barrell B. G., Brown N. L., Fiddes J. C., Hutchison C. A., 3rd, Slocombe P. M., Smith M. The nucleotide sequence of bacteriophage phiX174. J Mol Biol. 1978 Oct 25;125(2):225–246. doi: 10.1016/0022-2836(78)90346-7. [DOI] [PubMed] [Google Scholar]
  12. Szybalski W. Universal restriction endonucleases: designing novel cleavage specificities by combining adapter oligodeoxynucleotide and enzyme moieties. Gene. 1985;40(2-3):169–173. doi: 10.1016/0378-1119(85)90039-3. [DOI] [PubMed] [Google Scholar]
  13. Tartof K. D., Hobbs C. A. New cloning vectors and techniques for easy and rapid restriction mapping. Gene. 1988 Jul 30;67(2):169–182. doi: 10.1016/0378-1119(88)90394-0. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES