Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1987 Aug;84(15):5320–5324. doi: 10.1073/pnas.84.15.5320

The lens protein alpha A-crystallin of the blind mole rat, Spalax ehrenbergi: evolutionary change and functional constraints.

W Hendriks, J Leunissen, E Nevo, H Bloemendal, W W de Jong
PMCID: PMC298847  PMID: 3474658

Abstract

The complete structure of the single-copy alpha A-crystallin gene of the blind mole rat (Spalax ehrenbergi) has been determined in order to elucidate the evolutionary effects of the loss of vision on a lens-specific protein and its gene. The alpha A-crystallin gene appears to have all the necessary transcriptional and translational signal sequences to be expressed in the rudimentary lens of the mole rat and gives rise to probably two protein products by means of alternative splicing, as in rodents with normal vision. Comparisons of the blind mole rat alpha A-crystallin sequence with alpha A sequences from other rodents reveal a considerable acceleration of the substitution rate at nonsynonymous positions in the mole rate lineage, which reflects a relaxation of selective constraints, but the acceleration is not to the extent that might be expected if the gene were now without any function. The remaining evolutionary constraints still imposed upon the mole rat alpha A-crystallin gene may possibly reflect the need for alpha-crystallin expression as an indispensable component in the developmental program of the atrophied eye.

Full text

PDF
5322

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Balemans M. G., Pévet P., Legerstee W. C., Nevo E. Preliminary investigations of melatonin and 5-methoxy-tryptophol synthesis in the pineal, retina, and harderian gland of the mole rat and in the pineal of the mouse "eyeless". J Neural Transm. 1980;49(4):247–255. doi: 10.1007/BF01252129. [DOI] [PubMed] [Google Scholar]
  2. Breathnach R., Chambon P. Organization and expression of eucaryotic split genes coding for proteins. Annu Rev Biochem. 1981;50:349–383. doi: 10.1146/annurev.bi.50.070181.002025. [DOI] [PubMed] [Google Scholar]
  3. Deininger P. L. Random subcloning of sonicated DNA: application to shotgun DNA sequence analysis. Anal Biochem. 1983 Feb 15;129(1):216–223. doi: 10.1016/0003-2697(83)90072-6. [DOI] [PubMed] [Google Scholar]
  4. Dickerson R. E. The structures of cytochrome c and the rates of molecular evolution. J Mol Evol. 1971;1(1):26–45. doi: 10.1007/BF01659392. [DOI] [PubMed] [Google Scholar]
  5. Graur D. Amino acid composition and the evolutionary rates of protein-coding genes. J Mol Evol. 1985;22(1):53–62. doi: 10.1007/BF02105805. [DOI] [PubMed] [Google Scholar]
  6. Haim A., Heth G., Pratt H., Nevo E. Photoperiodic effects on thermoregulation in a 'blind' subterranean mammal. J Exp Biol. 1983 Nov;107:59–64. doi: 10.1242/jeb.107.1.59. [DOI] [PubMed] [Google Scholar]
  7. Ingolia T. D., Craig E. A. Four small Drosophila heat shock proteins are related to each other and to mammalian alpha-crystallin. Proc Natl Acad Sci U S A. 1982 Apr;79(7):2360–2364. doi: 10.1073/pnas.79.7.2360. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. King C. R., Piatigorsky J. Alternative RNA splicing of the murine alpha A-crystallin gene: protein-coding information within an intron. Cell. 1983 Mar;32(3):707–712. doi: 10.1016/0092-8674(83)90056-9. [DOI] [PubMed] [Google Scholar]
  9. King C. R., Shinohara T., Piatigorsky J. alpha A-crystallin messenger RNA of the mouse lens: more noncoding than coding sequences. Science. 1982 Feb 19;215(4535):985–987. doi: 10.1126/science.7156978. [DOI] [PubMed] [Google Scholar]
  10. Miyata T., Yasunaga T. Molecular evolution of mRNA: a method for estimating evolutionary rates of synonymous and amino acid substitutions from homologous nucleotide sequences and its application. J Mol Evol. 1980 Sep;16(1):23–36. doi: 10.1007/BF01732067. [DOI] [PubMed] [Google Scholar]
  11. Moormann R. J., van der Velden H. M., Dodemont H. J., Andreoli P. M., Bloemendal H., Schoenmakers J. G. An unusually long non-coding region in rat lens alpha-crystallin messenger RNA. Nucleic Acids Res. 1981 Oct 10;9(19):4813–4822. doi: 10.1093/nar/9.19.4813. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Moscona A. A., Fox L., Smith J., Degenstein L. Antiserum to lens antigens immunostains Müller glia cells in the neural retina. Proc Natl Acad Sci U S A. 1985 Aug;82(16):5570–5573. doi: 10.1073/pnas.82.16.5570. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Pevet P., Heth G., Hiam A., Nevo E. Photoperiod perception in the blind mole rat (Spalax ehrenbergi, Nehring): involvement of the Harderian gland, atrophied eyes, and melatonin. J Exp Zool. 1984 Oct;232(1):41–50. doi: 10.1002/jez.1402320106. [DOI] [PubMed] [Google Scholar]
  14. Piatigorsky J. Gene expression and genetic engineering in the lens. Friedenwald lecture. Invest Ophthalmol Vis Sci. 1987 Jan;28(1):9–28. [PubMed] [Google Scholar]
  15. Quax-Jeuken Y., Bruisten S., Bloemendal H., de Jong W. W., Nevo E. Evolution of crystallins: expression of lens-specific proteins in the blind mammals mole (Talpa europaea) and mole rat (Spalax ehrenbergi). Mol Biol Evol. 1985 Jul;2(4):279–288. doi: 10.1093/oxfordjournals.molbev.a040351. [DOI] [PubMed] [Google Scholar]
  16. Quax-Jeuken Y., Quax W., van Rens G., Khan P. M., Bloemendal H. Complete structure of the alpha B-crystallin gene: conservation of the exon-intron distribution in the two nonlinked alpha-crystallin genes. Proc Natl Acad Sci U S A. 1985 Sep;82(17):5819–5823. doi: 10.1073/pnas.82.17.5819. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Sanger F., Coulson A. R., Barrell B. G., Smith A. J., Roe B. A. Cloning in single-stranded bacteriophage as an aid to rapid DNA sequencing. J Mol Biol. 1980 Oct 25;143(2):161–178. doi: 10.1016/0022-2836(80)90196-5. [DOI] [PubMed] [Google Scholar]
  18. Staden R. Sequence data handling by computer. Nucleic Acids Res. 1977 Nov;4(11):4037–4051. doi: 10.1093/nar/4.11.4037. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Stapel S. O., Leunissen J. A., Versteeg M., Wattel J., de Jong W. W. Ratites as oldest offshoot of avian stem--evidence from alpha-crystallin A sequences. Nature. 1984 Sep 20;311(5983):257–259. doi: 10.1038/311257a0. [DOI] [PubMed] [Google Scholar]
  20. Tomarev S. I., Zinovieva R. D., Dolgilevich S. M., Krayev A. S., Skryabin K. G., Gause G. G., Jr The absence of the long 3'-non-translated region in mRNA coding for eye lens alpha A2-crystallin of the frog (Rana temporaria). FEBS Lett. 1983 Oct 3;162(1):47–51. doi: 10.1016/0014-5793(83)81046-1. [DOI] [PubMed] [Google Scholar]
  21. Wiechmann A. F. Melatonin: parallels in pineal gland and retina. Exp Eye Res. 1986 Jun;42(6):507–527. doi: 10.1016/0014-4835(86)90042-4. [DOI] [PubMed] [Google Scholar]
  22. Wilson A. C., Carlson S. S., White T. J. Biochemical evolution. Annu Rev Biochem. 1977;46:573–639. doi: 10.1146/annurev.bi.46.070177.003041. [DOI] [PubMed] [Google Scholar]
  23. van den Heuvel R., Hendriks W., Quax W., Bloemendal H. Complete structure of the hamster alpha A crystallin gene. Reflection of an evolutionary history by means of exon shuffling. J Mol Biol. 1985 Sep 20;185(2):273–284. doi: 10.1016/0022-2836(85)90403-6. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES