Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1987 Dec;84(23):8628–8632. doi: 10.1073/pnas.84.23.8628

Purification and characterization of a peptide from amyloid-rich pancreases of type 2 diabetic patients.

G J Cooper 1, A C Willis 1, A Clark 1, R C Turner 1, R B Sim 1, K B Reid 1
PMCID: PMC299599  PMID: 3317417

Abstract

Deposition of amyloid in pancreatic islets is a common feature in human type 2 diabetic subjects but because of its insolubility and low tissue concentrations, the structure of its monomer has not been determined. We describe a peptide, of calculated molecular mass 3905 Da, that was a major protein component of amyloid-rich pancreatic extracts of three type 2 diabetic patients. After collagenase treatment, an extract containing 20-50% amyloid was solubilized by sonication into 70% formic acid and the peptide was purified by gel filtration followed by reverse-phase high-performance liquid chromatography. We term this peptide diabetes-associated peptide, as it was not detected in extracts of pancreas from any of six normal subjects. Diabetes-associated peptide contains 37 amino acids and is 46% identical to the sequences of rat and human calcitonin gene-related peptide, indicating that these peptides are related in evolution. Sequence identities with conserved residues of the insulin A chain were also seen in a 16-residue segment. On extraction, the islet amyloid is particulate and insoluble like the core particles of Alzheimer disease. Their monomers have similar molecular masses, each having a hydropathic region that can probably form beta-pleated sheets. The accumulation of amyloid, including diabetes-associated peptide, in islets may impair islet function in type 2 diabetes mellitus.

Full text

PDF
8630

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ahronheim J. H. The Nature of the Hyaline Material in the Pancreatic Islands in Diabetes Mellitus. Am J Pathol. 1943 Sep;19(5):873–882. [PMC free article] [PubMed] [Google Scholar]
  2. BELL E. T. Hyalinization of the islet of Langerhans in diabetes mellitus. Diabetes. 1952 Sep-Oct;1(5):341–344. doi: 10.2337/diab.1.5.341. [DOI] [PubMed] [Google Scholar]
  3. BELL E. T. Hyalinization of the islets of Langerhans in nondiabetic individuals. Am J Pathol. 1959 Jul-Aug;35(4):801–805. [PMC free article] [PubMed] [Google Scholar]
  4. Brain S. D., Williams T. J., Tippins J. R., Morris H. R., MacIntyre I. Calcitonin gene-related peptide is a potent vasodilator. Nature. 1985 Jan 3;313(5997):54–56. doi: 10.1038/313054a0. [DOI] [PubMed] [Google Scholar]
  5. Cerasi E., Luft R. Insulin response to glucose infusion in diabetic and non-diabetic monozygotic twin pairs. Genetic control of insulin response? Acta Endocrinol (Copenh) 1967 Jun;55(2):330–345. doi: 10.1530/acta.0.0550330. [DOI] [PubMed] [Google Scholar]
  6. Chou P. Y., Fasman G. D. Empirical predictions of protein conformation. Annu Rev Biochem. 1978;47:251–276. doi: 10.1146/annurev.bi.47.070178.001343. [DOI] [PubMed] [Google Scholar]
  7. Clark A., Cooper G. J., Lewis C. E., Morris J. F., Willis A. C., Reid K. B., Turner R. C. Islet amyloid formed from diabetes-associated peptide may be pathogenic in type-2 diabetes. Lancet. 1987 Aug 1;2(8553):231–234. doi: 10.1016/s0140-6736(87)90825-7. [DOI] [PubMed] [Google Scholar]
  8. Dayhoff M. O., Barker W. C., Hunt L. T. Establishing homologies in protein sequences. Methods Enzymol. 1983;91:524–545. doi: 10.1016/s0076-6879(83)91049-2. [DOI] [PubMed] [Google Scholar]
  9. EHRLICH J. C., RATNER I. M. Amyloidosis of the islets of Langerhans. A restudy of islet hyalin in diabetic and non-diabetic individuals. Am J Pathol. 1961 Jan;38:49–59. [PMC free article] [PubMed] [Google Scholar]
  10. Goldgaber D., Lerman M. I., McBride O. W., Saffiotti U., Gajdusek D. C. Characterization and chromosomal localization of a cDNA encoding brain amyloid of Alzheimer's disease. Science. 1987 Feb 20;235(4791):877–880. doi: 10.1126/science.3810169. [DOI] [PubMed] [Google Scholar]
  11. Heinrikson R. L., Meredith S. C. Amino acid analysis by reverse-phase high-performance liquid chromatography: precolumn derivatization with phenylisothiocyanate. Anal Biochem. 1984 Jan;136(1):65–74. doi: 10.1016/0003-2697(84)90307-5. [DOI] [PubMed] [Google Scholar]
  12. Hewick R. M., Hunkapiller M. W., Hood L. E., Dreyer W. J. A gas-liquid solid phase peptide and protein sequenator. J Biol Chem. 1981 Aug 10;256(15):7990–7997. [PubMed] [Google Scholar]
  13. Howard C. F., Jr Longitudinal studies on the development of diabetes in individual Macaca nigra. Diabetologia. 1986 May;29(5):301–306. doi: 10.1007/BF00452067. [DOI] [PubMed] [Google Scholar]
  14. Johnson K. H., Stevens J. B. Light and electron microscopic studies of islet amyloid in diabetic cats. Diabetes. 1973 Feb;22(2):81–90. doi: 10.2337/diab.22.2.81. [DOI] [PubMed] [Google Scholar]
  15. Kang J., Lemaire H. G., Unterbeck A., Salbaum J. M., Masters C. L., Grzeschik K. H., Multhaup G., Beyreuther K., Müller-Hill B. The precursor of Alzheimer's disease amyloid A4 protein resembles a cell-surface receptor. Nature. 1987 Feb 19;325(6106):733–736. doi: 10.1038/325733a0. [DOI] [PubMed] [Google Scholar]
  16. Kyte J., Doolittle R. F. A simple method for displaying the hydropathic character of a protein. J Mol Biol. 1982 May 5;157(1):105–132. doi: 10.1016/0022-2836(82)90515-0. [DOI] [PubMed] [Google Scholar]
  17. Maloy A. L., Longnecker D. S., Greenberg E. R. The relation of islet amyloid to the clinical type of diabetes. Hum Pathol. 1981 Oct;12(10):917–922. doi: 10.1016/s0046-8177(81)80197-9. [DOI] [PubMed] [Google Scholar]
  18. Masters C. L., Simms G., Weinman N. A., Multhaup G., McDonald B. L., Beyreuther K. Amyloid plaque core protein in Alzheimer disease and Down syndrome. Proc Natl Acad Sci U S A. 1985 Jun;82(12):4245–4249. doi: 10.1073/pnas.82.12.4245. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. McCulloch J., Uddman R., Kingman T. A., Edvinsson L. Calcitonin gene-related peptide: functional role in cerebrovascular regulation. Proc Natl Acad Sci U S A. 1986 Aug;83(15):5731–5735. doi: 10.1073/pnas.83.15.5731. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Morris H. R., Panico M., Etienne T., Tippins J., Girgis S. I., MacIntyre I. Isolation and characterization of human calcitonin gene-related peptide. Nature. 1984 Apr 19;308(5961):746–748. doi: 10.1038/308746a0. [DOI] [PubMed] [Google Scholar]
  21. Mulderry P. K., Ghatei M. A., Rodrigo J., Allen J. M., Rosenfeld M. G., Polak J. M., Bloom S. R. Calcitonin gene-related peptide in cardiovascular tissues of the rat. Neuroscience. 1985 Mar;14(3):947–954. doi: 10.1016/0306-4522(85)90156-3. [DOI] [PubMed] [Google Scholar]
  22. O'Rahilly S. P., Nugent Z., Rudenski A. S., Hosker J. P., Burnett M. A., Darling P., Turner R. C. Beta-cell dysfunction, rather than insulin insensitivity, is the primary defect in familial type 2 diabetes. Lancet. 1986 Aug 16;2(8503):360–364. doi: 10.1016/s0140-6736(86)90052-8. [DOI] [PubMed] [Google Scholar]
  23. Pettersson M., Ahrén B., Böttcher G., Sundler F. Calcitonin gene-related peptide: occurrence in pancreatic islets in the mouse and the rat and inhibition of insulin secretion in the mouse. Endocrinology. 1986 Aug;119(2):865–869. doi: 10.1210/endo-119-2-865. [DOI] [PubMed] [Google Scholar]
  24. Pras M., Schubert M., Zucker-Franklin D., Rimon A., Franklin E. C. The characterization of soluble amyloid prepared in water. J Clin Invest. 1968 Apr;47(4):924–933. doi: 10.1172/JCI105784. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Roberts R. S., Spitzer W. O., Delmore T., Sackett D. L. An empirical demonstration of Berkson's bias. J Chronic Dis. 1978 Feb;31(2):119–128. doi: 10.1016/0021-9681(78)90097-8. [DOI] [PubMed] [Google Scholar]
  26. Rosenfeld M. G., Mermod J. J., Amara S. G., Swanson L. W., Sawchenko P. E., Rivier J., Vale W. W., Evans R. M. Production of a novel neuropeptide encoded by the calcitonin gene via tissue-specific RNA processing. Nature. 1983 Jul 14;304(5922):129–135. doi: 10.1038/304129a0. [DOI] [PubMed] [Google Scholar]
  27. Schifter S., Williams E. D., Craig R. K., Hansen H. H. Calcitonin gene-related peptide and calcitonin in medullary thyroid carcinoma. Clin Endocrinol (Oxf) 1986 Dec;25(6):703–710. doi: 10.1111/j.1365-2265.1986.tb03626.x. [DOI] [PubMed] [Google Scholar]
  28. Schneider H. M., Störkel S., Will W. Das Amyloid der Langerhansschen Inseln und seine Beziehung zum Diabetes mellitus. Dtsch Med Wochenschr. 1980 Aug 15;105(33):1143–1147. doi: 10.1055/s-2008-1070828. [DOI] [PubMed] [Google Scholar]
  29. Staden R. The current status and portability of our sequence handling software. Nucleic Acids Res. 1986 Jan 10;14(1):217–231. doi: 10.1093/nar/14.1.217. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Steenbergh P. H., Höppener J. W., Zandberg J., Lips C. J., Jansz H. S. A second human calcitonin/CGRP gene. FEBS Lett. 1985 Apr 22;183(2):403–407. doi: 10.1016/0014-5793(85)80820-6. [DOI] [PubMed] [Google Scholar]
  31. Turner R. C., Holman R. R., Matthews D., Hockaday T. D., Peto J. Insulin deficiency and insulin resistance interaction in diabetes: estimation of their relative contribution by feedback analysis from basal plasma insulin and glucose concentrations. Metabolism. 1979 Nov;28(11):1086–1096. doi: 10.1016/0026-0495(79)90146-x. [DOI] [PubMed] [Google Scholar]
  32. Westermark P. Fine structure of islets of Langerhans in insular amyloidosis. Virchows Arch A Pathol Pathol Anat. 1973 Mar 20;359(1):1–18. doi: 10.1007/BF00549079. [DOI] [PubMed] [Google Scholar]
  33. Westermark P., Wernstedt C., O'Brien T. D., Hayden D. W., Johnson K. H. Islet amyloid in type 2 human diabetes mellitus and adult diabetic cats contains a novel putative polypeptide hormone. Am J Pathol. 1987 Jun;127(3):414–417. [PMC free article] [PubMed] [Google Scholar]
  34. Westermark P., Wernstedt C., Wilander E., Hayden D. W., O'Brien T. D., Johnson K. H. Amyloid fibrils in human insulinoma and islets of Langerhans of the diabetic cat are derived from a neuropeptide-like protein also present in normal islet cells. Proc Natl Acad Sci U S A. 1987 Jun;84(11):3881–3885. doi: 10.1073/pnas.84.11.3881. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Westermark P., Wernstedt C., Wilander E., Sletten K. A novel peptide in the calcitonin gene related peptide family as an amyloid fibril protein in the endocrine pancreas. Biochem Biophys Res Commun. 1986 Nov 14;140(3):827–831. doi: 10.1016/0006-291x(86)90708-4. [DOI] [PubMed] [Google Scholar]
  36. Westermark P., Wilander E. Islet amyloid in Type 2 (non-insulin-dependent) diabetes is related to insulin. Diabetologia. 1983 May;24(5):342–346. doi: 10.1007/BF00251821. [DOI] [PubMed] [Google Scholar]
  37. Westermark P., Wilander E. The influence of amyloid deposits on the islet volume in maturity onset diabetes mellitus. Diabetologia. 1978 Nov;15(5):417–421. doi: 10.1007/BF01219652. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES