Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1963 May;49(5):633–638. doi: 10.1073/pnas.49.5.633

ON THE LIGHT-INDUCED BLEACHING OF PHOTOSYNTHETIC PYRIDINE NUCLEOTIDE REDUCTASE IN THE PRESENCE OF CHLOROPLASTS*

Britton Chance 1,2, Anthony San Pietro 1,2,
PMCID: PMC299941  PMID: 16591080

Full text

PDF
634

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. AMESZ J., DUYSENS L. N. Action spectrum, kinetics and quantum requirement of phosphopyridine nucleotide reduction and cytochrome oxidation in the blue-green alga Anacystis nidulans. Biochim Biophys Acta. 1962 Oct 22;64:261–278. doi: 10.1016/0006-3002(62)90736-9. [DOI] [PubMed] [Google Scholar]
  2. APPELLA E., SAN PIETRO A. Physical properties of photosynthetic pyridine nucleotide reductase. Biochem Biophys Res Commun. 1961 Dec 20;6:349–354. doi: 10.1016/0006-291x(61)90143-7. [DOI] [PubMed] [Google Scholar]
  3. CHANCE B., HOLLUNGER G. Energy-linked reduction of mitochondrial pyridine nucleotide. Nature. 1960 Mar 5;185:666–672. doi: 10.1038/185666a0. [DOI] [PubMed] [Google Scholar]
  4. CLAYTON R. K. Evidence for the photochemical reduction on coenzyme Q in chromatophores of photosynthetic bacteria. Biochem Biophys Res Commun. 1962 Sep 25;9:49–53. doi: 10.1016/0006-291x(62)90085-2. [DOI] [PubMed] [Google Scholar]
  5. Chance B., Nishimura M. ON THE MECHANISM OF CHLOROPHYLL-CYTOCHROME INTERACTION: THE TEMPERATURE INSENSITIVITY OF LIGHT-INDUCED CYTOCHROME OXIDATION IN CHROMATIUM. Proc Natl Acad Sci U S A. 1960 Jan;46(1):19–24. doi: 10.1073/pnas.46.1.19. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Chance B., Sager R. Oxygen and Light Induced Oxidations of Cytochrome, Flavoprotein, and Pyridine Nucleotide in a Chlamydomonas Mutant. Plant Physiol. 1957 Nov;32(6):548–561. doi: 10.1104/pp.32.6.548. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Chance B., Strehler B. Effects of Oxygen and Red Light upon the Absorption of Visible Light in Green Plants. Plant Physiol. 1957 Nov;32(6):536–548. doi: 10.1104/pp.32.6.536. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. DAVENPORT H. E., HILL R. A protein from leaves catalysing the reduction of haem-protein compounds by illuminated chloroplasts. Biochem J. 1960 Mar;74:493–501. doi: 10.1042/bj0740493. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. HILL R., BENDALL F. Crystallization of a photosynthetic reductase from a green plant. Nature. 1960 Jul 30;187:417–417. doi: 10.1038/187417a0. [DOI] [PubMed] [Google Scholar]
  10. HORIO T., YAMASHITA T. Some properties of photosynthetic pyridine nucleotide reductase from spinach. Biochem Biophys Res Commun. 1962 Sep 25;9:142–145. doi: 10.1016/0006-291x(62)90103-1. [DOI] [PubMed] [Google Scholar]
  11. KEISTER D. L., SAN PIETRO A., STOLZENBACH F. E. Photo-synthetic pyridine nucleotide reductase. III. Effect of phosphate acceptor system on triphosphopyridine nucleotide reduction. Arch Biochem Biophys. 1961 Aug;94:187–195. doi: 10.1016/0003-9861(61)90029-7. [DOI] [PubMed] [Google Scholar]
  12. KEISTER D. L., SAN PIETRO A., STOLZENBACH F. E. Pyridine nucleotide transhydrogenase from spinach. II. Requirement of enzyme for photochemical accumulation of reduced pyridine nucleotides. Arch Biochem Biophys. 1962 Aug;98:235–244. doi: 10.1016/0003-9861(62)90178-9. [DOI] [PubMed] [Google Scholar]
  13. LAZZARINI R. A., SAN PIETRO A. The reduction of cytochrome c by photosynthetic pyridine nucleotide reductase and transhydrogenase. Biochim Biophys Acta. 1962 Aug 13;62:417–420. doi: 10.1016/0006-3002(62)90273-1. [DOI] [PubMed] [Google Scholar]
  14. MORTENSON L. E., VALENTINE R. C., CARNAHAN J. E. An electron transport factor from Clostridium pasteurianum. Biochem Biophys Res Commun. 1962 Jun 4;7:448–452. doi: 10.1016/0006-291x(62)90333-9. [DOI] [PubMed] [Google Scholar]
  15. OLSON J. M., CHANCE B. Oxidation-reduction reactions in the photosynthetic bacterium Chromatium. II. Dependence of light reactions on intensity of irradiation and quantum efficiency of cytochrome oxidation. Arch Biochem Biophys. 1960;88:40–53. doi: 10.1016/0003-9861(60)90194-6. [DOI] [PubMed] [Google Scholar]
  16. RUMBERG B., MUELLER A., WITT H. T. New results about the mechanism of photosynthesis. Nature. 1962 Jun 2;194:854–856. doi: 10.1038/194854a0. [DOI] [PubMed] [Google Scholar]
  17. SAN PIETRO A., LANG H. M. Photosynthetic pyridine nucleotide reductase. I. Partial purification and properties of the enzyme from spinach. J Biol Chem. 1958 Mar;231(1):211–229. [PubMed] [Google Scholar]
  18. TAGAWA K., ARNON D. I. Ferredoxins as electron carriers in photosynthesis and in the biological production and consumption of hydrogen gas. Nature. 1962 Aug 11;195:537–543. doi: 10.1038/195537a0. [DOI] [PubMed] [Google Scholar]
  19. WHATLEY F. R., TAGAWA K., ARNON D. I. Separation of the light and dark reactions in electron transfer during photosynthesis. Proc Natl Acad Sci U S A. 1963 Feb 15;49:266–270. doi: 10.1073/pnas.49.2.266. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES