Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1974 Jul;54(1):69–82. doi: 10.1172/JCI107751

Pressure Control of Sodium Reabsorption and Intercellular Backflux across Proximal Kidney Tubule

Alain Grandchamp 1, Emile L Boulpaep 1
PMCID: PMC301525  PMID: 4834883

Abstract

The magnitude of changes in luminal hydrostatic pressure (ΔPL), peritubular capillary hydrostatic pressure (ΔPPT), and peritubular capillary colloid osmotic pressure (Δπ) was determined in the Necturus kidney during volume expansion (VE). The specific effects of separate changes of each pressure parameter on proximal net sodium transport (JNa) were studied in isolated perfused kidneys. The combined effect of ΔPL, ΔPPT, and Δπ, of a magnitude similar to that induced by volume expansion, decreases JNa by 26% in the perfused kidney. A major portion of the natriuresis in VE is due to changes in intrarenal pressures. The effect of Δπ on the permeability characteristics of Necturus proximal tubule was studied. With increasing Δπ, the ionic conductance of the paracellular shunt pathway decreased, since transepithelial input and specific resistance rose significantly, whereas cellular membrane resistance remained unchanged. Transepithelial permeability coefficients for sodium chloride and raffinose changed inversely proportional to transepithelial resistance, indicating an alteration of a paracellular permeation route. Net passive sodium backflux and active transport flux components were calculated. Increased net sodium transport with rising Δπ is accompanied by a significant drop in passive back diffusion, without an increment in the active flux component. Change in passive sodium ion back diffusion thus appears to be a key physiological factor in the control of transepithelial sodium transport.

Full text

PDF
72

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bank N., Aynedjian H. S., Wada T. Effect of peritubular capillary perfusion rate on proximal sodium reabsorption. Kidney Int. 1972 Jun;1(6):397–405. doi: 10.1038/ki.1972.52. [DOI] [PubMed] [Google Scholar]
  2. Bank N., Koch K. M., Aynedjian H. S., Aras M. Effect of changes in renal perfusion pressure on the suppression of proximal tubular sodium reabsorption due to saline loading. J Clin Invest. 1969 Feb;48(2):271–283. doi: 10.1172/JCI105983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bentzel C. J., Anagnostopoulos T., Pandit H. Necturus kidney: its response to effects of isotonic volume expansion. Am J Physiol. 1970 Jan;218(1):205–213. doi: 10.1152/ajplegacy.1970.218.1.205. [DOI] [PubMed] [Google Scholar]
  4. Boulpaep E. L. Permeability changes of the proximal tubule of Necturus during saline loading. Am J Physiol. 1972 Mar;222(3):517–531. doi: 10.1152/ajplegacy.1972.222.3.517. [DOI] [PubMed] [Google Scholar]
  5. Boulpaep E. L., Seely J. F. Electrophysiology of proximal and distal tubules in the autoperfused dog kidney. Am J Physiol. 1971 Oct;221(4):1084–1096. doi: 10.1152/ajplegacy.1971.221.4.1084. [DOI] [PubMed] [Google Scholar]
  6. Brenner B. M., Falchuk K. H., Keimowitz R. I., Berliner R. W. The relationship between peritubular capillary protein concentration and fluid reabsorption by the renal proximal tubule. J Clin Invest. 1969 Aug;48(8):1519–1531. doi: 10.1172/JCI106118. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Brenner B. M., Troy J. L., Daugharty T. M. On the mechanism of inhibition in fluid reabsorption by the renal proximal tubule of the volume-expanded rat. J Clin Invest. 1971 Aug;50(8):1596–1602. doi: 10.1172/JCI106647. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Brenner B. M., Troy J. L. Postglomerular vascular protein concentration: evidence for a causal role in governing fluid reabsorption and glomerulotublar balance by the renal proximal tubule. J Clin Invest. 1971 Feb;50(2):336–349. doi: 10.1172/JCI106501. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Burg M. B., Orloff J. Electrical potential difference across proximal convoluted tubules. Am J Physiol. 1970 Dec;219(6):1714–1716. doi: 10.1152/ajplegacy.1970.219.6.1714. [DOI] [PubMed] [Google Scholar]
  10. DE WARDENER H. E., MILLS I. H., CLAPHAM W. F., HAYTER C. J. Studies on the efferent mechanism of the sodium diuresis which follows the administration of intravenous saline in the dog. Clin Sci. 1961 Oct;21:249–258. [PubMed] [Google Scholar]
  11. Diamond J. M., Bossert W. H. Standing-gradient osmotic flow. A mechanism for coupling of water and solute transport in epithelia. J Gen Physiol. 1967 Sep;50(8):2061–2083. doi: 10.1085/jgp.50.8.2061. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Falchuk K. H., Brenner B. M., Tadokoro M., Berliner R. W. Oncotic and hydrostatic pressures in peritubular capillaries and fluid reabsorption by proximal tubule. Am J Physiol. 1971 May;220(5):1427–1433. doi: 10.1152/ajplegacy.1971.220.5.1427. [DOI] [PubMed] [Google Scholar]
  13. GIEBISCH G. Measurements of electrical potential differences on single nephrons of the perfused Necturus kidney. J Gen Physiol. 1961 Mar;44:659–678. doi: 10.1085/jgp.44.4.659. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Grandchamp A., Boulpaep E. L. Effect of intraluminal pressure on proximal tubular sodium reabsorptin. A shrinking drop micropuncture study. Yale J Biol Med. 1972 Jun-Aug;45(3-4):275–288. [PMC free article] [PubMed] [Google Scholar]
  15. Grantham J. J., Qualizza P. B., Welling L. W. Influence of serum proteins on net fluid reabsorption of isolated proximal tubules. Kidney Int. 1972 Aug;2(2):66–75. doi: 10.1038/ki.1972.73. [DOI] [PubMed] [Google Scholar]
  16. Green R., Windhager E. E., Giebisch G. Protein oncotic pressure effects on proximal tubular fluid movement in the rat. Am J Physiol. 1974 Feb;226(2):265–276. doi: 10.1152/ajplegacy.1974.226.2.265. [DOI] [PubMed] [Google Scholar]
  17. HODGKIN A. L., KATZ B. The effect of sodium ions on the electrical activity of giant axon of the squid. J Physiol. 1949 Mar 1;108(1):37–77. doi: 10.1113/jphysiol.1949.sp004310. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Hayslett J. P. Effect of changes in hydrostatic pressure in peritubular capillaries on the permeability of the proximal tubule. J Clin Invest. 1973 Jun;52(6):1314–1319. doi: 10.1172/JCI107302. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Horster M., Burg M., Potts D., Orloff J. Fluid absorption by proximal tubules in the absence of a colloid osmotic gradient. Kidney Int. 1973 Jul;4(1):6–11. doi: 10.1038/ki.1973.74. [DOI] [PubMed] [Google Scholar]
  20. Imai M., Kokko J. P. Effect of peritubular protein concentration on reabsorption of sodium and water in isolated perfused proxmal tubules. J Clin Invest. 1972 Feb;51(2):314–325. doi: 10.1172/JCI106816. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Kjekshus J., Aukland K., Kiil F. Oxygen cost of sodium reabsorption in proximal and distal parts of the nephron. Scand J Clin Lab Invest. 1969 Jun;23(4):307–316. doi: 10.3109/00365516909081696. [DOI] [PubMed] [Google Scholar]
  22. Kokko J. P., Rector F. C. Flow dependence of transtubular potential difference in isolated perfused segments of rabbit proximal convoluted tubule. J Clin Invest. 1971 Dec;50(12):2745–2750. doi: 10.1172/JCI106776. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Lewy J. E., Windhager E. E. Peritubular control of proximal tubular fluid reabsorption in the rat kidney. Am J Physiol. 1968 May;214(5):943–954. doi: 10.1152/ajplegacy.1968.214.5.943. [DOI] [PubMed] [Google Scholar]
  24. Martino J. A., Earley L. E. Relationship between intrarenal hydrostatic pressure and hemodynamically induced changes in sodium excretion. Circ Res. 1968 Sep;23(3):371–386. doi: 10.1161/01.res.23.3.371. [DOI] [PubMed] [Google Scholar]
  25. Moody F. G., Durbin R. P. Water flow induced by osmotic and hydrostatic pressure in the stomach. Am J Physiol. 1969 Jul;217(1):255–261. doi: 10.1152/ajplegacy.1969.217.1.255. [DOI] [PubMed] [Google Scholar]
  26. Nutbourne D. M. The effect of small hydrostatic pressure gradients on the rate of active sodium transport across isolated living frog-skin membranes. J Physiol. 1968 Mar;195(1):1–18. doi: 10.1113/jphysiol.1968.sp008442. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Persson A. E., Agerup B., Schnermann J. The effect of luminal application of colloids on rat proximal tubular net fluid flux. Kidney Int. 1972 Oct;2(4):203–213. doi: 10.1038/ki.1972.96. [DOI] [PubMed] [Google Scholar]
  28. Seely J. F. Effects of peritubular oncotic pressure on rat proximal tubule electrical resistance. Kidney Int. 1973 Jul;4(1):28–35. doi: 10.1038/ki.1973.77. [DOI] [PubMed] [Google Scholar]
  29. Tadokoro M., Boulpaep E. L. Electrophoretic method of ion injection in single kidney cells. Yale J Biol Med. 1972 Jun-Aug;45(3-4):432–435. [PMC free article] [PubMed] [Google Scholar]
  30. Vargas F. F. Filtration coefficient of the axon membrane as measured with hydrostatic and osmotic methods. J Gen Physiol. 1968 Jan;51(1):13–27. doi: 10.1085/jgp.51.1.13. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Vogel G., Ulbrich M., Gärtner K. Uber den Austausch des extravasalen Plasma-Albumins (131-J-Albumin) der Niere mit dem Blut und den Abfluss von Makromolekülen (Polyvinylpyrrolidon) mit der Nierenlymphe bei normaler und durch Furosemid gehemmter tubulärer Reabsorption. Untersuchungen zur Funktion des Niereninterstitiums und der Bedeutung des tubulären Reabsorbates für die interstitielle Flüssigkeit. Pflugers Arch. 1969;305(1):47–64. doi: 10.1007/BF00586395. [DOI] [PubMed] [Google Scholar]
  32. WHITTEMBURY G., SUGINO N., SOLOMON A. K. Effect of antidiuretic hormone and calcium on the equivalent pore radius of kidney slices from Necturus. Nature. 1960 Aug 20;187:699–701. doi: 10.1038/187699a0. [DOI] [PubMed] [Google Scholar]
  33. WHITTEMBURY G., SUGINO N., SOLOMON A. K. Ionic permeability and electrical potential differences in Necturus kidney cells. J Gen Physiol. 1961 Mar;44:689–712. doi: 10.1085/jgp.44.4.689. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Welling L. W., Grantham J. J. Physical properties of isolated perfused renal tubules and tubular basement membranes. J Clin Invest. 1972 May;51(5):1063–1075. doi: 10.1172/JCI106898. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Windhager E. E., Lewy J. E., Spitzer A. Intrarenal control of proximal tubular reabsorption of sodium and water. Nephron. 1969;6(3):247–259. doi: 10.1159/000179732. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES