Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1972 Apr;51(4):769–778. doi: 10.1172/JCI106871

Complete Deficiency of Leukocyte Glucose-6-Phosphate Dehydrogenase with Defective Bactericidal Activity

M Robert Cooper 1,2,3, Lawrence R DeChatelet 1,2,3, Charles E McCall 1,2,3, Mariano F La Via 1,2,3, Charles L Spurr 1,2,3, Robert L Baehner 1,2,3
PMCID: PMC302189  PMID: 4401271

Abstract

A 52 yr old Caucasian female (F. E.) had hemolytic anemia, a leukemoid reaction, and fatal sepsis due to Escherichia coli. Her leukocytes ingested bacteria normally but did not kill catalase positive Staphylococcus aureus, Escherichia coli, and Serratia marcescens. An H2O2-producing bacterium, Streptococcus faecalis, was killed normally. Granule myeloperoxidase, acid and alkaline phosphatase, and beta glucuronidase activities were normal, and these enzymes shifted normally to the phagocyte vacuole (light and electron microscopy). Intravacuolar reduction of nitroblue tetrazolium did not occur. Moreover, only minimal quantities of H2O2 were generated, and the hexose monophosphate shunt (HMPS) was not stimulated during phagocytosis.

These observations suggested the diagnosis of chronic granulomatous disease. However, in contrast to control and chronic granulomatous disease leukocytes, glucose-6-phosphate dehydrogenase activity was completely absent in F. E. leukocytes whereas NADH oxidase and NADPH oxidase activities were both normal. Unlike chronic granulomatous disease, methylene blue did not stimulate the hexose monophosphate shunt in F. E. cells. Thus, F. E. and chronic granulomatous disease leukocytes appear to share certain metabolic and bactericidal defects, but the metabolic basis of the abnormality differs. Chronic granulomatous disease cells lack oxidase activity which produces H2O2; F. E. cells had normal levels of oxidase activity but failed to produce NADPH due to complete glucose-6-phosphate dehydrogenase deficiency. These data indicate that a complete absence of leukocyte glucose-6-phosphate dehydrogenase with defective hexose monophosphate shunt activity is associated with low H2O2 production and inadequate bactericidal activity, and further suggest an important role for NADPH in the production of H2O2 in human granulocytes.

Full text

PDF
778

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BECK W. S. Occurrence and control of the phosphogluconate oxidation pathway in normal and leukemic leukocytes. J Biol Chem. 1958 May;232(1):271–283. [PubMed] [Google Scholar]
  2. BECK W. S. The control of leukocyte glycolysis. J Biol Chem. 1958 May;232(1):251–270. [PubMed] [Google Scholar]
  3. BERENDES H., BRIDGES R. A., GOOD R. A. A fatal granulomatosus of childhood: the clinical study of a new syndrome. Minn Med. 1957 May;40(5):309–312. [PubMed] [Google Scholar]
  4. Baehner R. L., Gilman N., Karnovsky M. L. Respiration and glucose oxidation in human and guinea pig leukocytes: comparative studies. J Clin Invest. 1970 Apr;49(4):692–700. doi: 10.1172/JCI106281. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Baehner R. L., Karnovsky M. J., Karnovsky M. L. Degranulation of leukocytes in chronic granulomatous disease. J Clin Invest. 1969 Jan;48(1):187–192. doi: 10.1172/JCI105967. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Baehner R. L., Karnovsky M. L. Deficiency of reduced nicotinamide-adenine dinucleotide oxidase in chronic granulomatous disease. Science. 1968 Dec 13;162(3859):1277–1279. doi: 10.1126/science.162.3859.1277. [DOI] [PubMed] [Google Scholar]
  7. Baehner R. L., Nathan D. G., Karnovsky M. L. Correction of metabolic deficiencies in the leukocytes of patients with chronic granulomatous disease. J Clin Invest. 1970 May;49(5):865–870. doi: 10.1172/JCI106305. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Baehner R. L., Nathan D. G. Leukocyte oxidase: defective activity in chronic granulomatous disease. Science. 1967 Feb 17;155(3764):835–836. doi: 10.1126/science.155.3764.835. [DOI] [PubMed] [Google Scholar]
  9. Baehner R. L., Nathan D. G. Quantitative nitroblue tetrazolium test in chronic granulomatous disease. N Engl J Med. 1968 May 2;278(18):971–976. doi: 10.1056/NEJM196805022781801. [DOI] [PubMed] [Google Scholar]
  10. CAGAN R. H., KARNOVSKY M. L. ENZYMATIC BASIS OF THE RESPIRATORY STIMULATION DURING PHAGOCYTOSIS. Nature. 1964 Oct 17;204:255–257. doi: 10.1038/204255a0. [DOI] [PubMed] [Google Scholar]
  11. COHN Z. A., HIRSCH J. G. The influence of phagocytosis on the intracellular distribution of granule-associated components of polymorphonuclear leucocytes. J Exp Med. 1960 Dec 1;112:1015–1022. doi: 10.1084/jem.112.6.1015. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Cline M. J., Lehrer R. I. D-amino acid oxidase in leukocytes: a possible D-amino-acid-linked antimicrobial system. Proc Natl Acad Sci U S A. 1969 Mar;62(3):756–763. doi: 10.1073/pnas.62.3.756. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. DAVIDSON R. G., NITOWSKY H. M., CHILDS B. DEMONSTRATION OF TWO POPULATIONS OF CELLS IN THE HUMAN FEMALE HETEROZYGOUS FOR GLUCOSE-6-PHOSPHATE DEHYDROGENASE VARIANTS. Proc Natl Acad Sci U S A. 1963 Sep;50:481–485. doi: 10.1073/pnas.50.3.481. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. DeChatelet L. R., Cooper M. R. A modified procedure for the determination of leukocyte alkaline phosphatase. Biochem Med. 1970 Aug;4(1):61–68. doi: 10.1016/0006-2944(70)90103-1. [DOI] [PubMed] [Google Scholar]
  15. DeChatelet L. R., Cooper M. R., McCall C. E. Absence of measurable leukocyte alkaline phosphatase activity from leukocytes of patients with chronic granulocytic leukemia. Clin Chem. 1970 Sep;16(9):798–799. [PubMed] [Google Scholar]
  16. Dechatelet L. R., Cooper M. R., McCall C. E. Dissociation by colchicine of the hexose monophosphate shunt activation from the bactericidal activity of the leukocyte. Infect Immun. 1971 Jan;3(1):66–72. doi: 10.1128/iai.3.1.66-72.1971. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Eckstein M. R., Baehner R. L., Nathan D. G. Amino acid oxidase of leukocytes in relation to H 2 O 2 -mediated bacterial killing. J Clin Invest. 1971 Sep;50(9):1985–1991. doi: 10.1172/JCI106690. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Evans A. E., Kaplan N. O. Pyridine nucleotide transhydrogenase in normal human and leukemic leukocytes. J Clin Invest. 1966 Aug;45(8):1268–1272. doi: 10.1172/JCI105433. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Gandini E., Gartler S. M. Glucose-6-phosphate dehydrogenase mosaicism for studying the development of blood cell precursors. Nature. 1969 Nov 8;224(5219):599–600. doi: 10.1038/224599a0. [DOI] [PubMed] [Google Scholar]
  20. Holmes B., Page A. R., Good R. A. Studies of the metabolic activity of leukocytes from patients with a genetic abnormality of phagocytic function. J Clin Invest. 1967 Sep;46(9):1422–1432. doi: 10.1172/JCI105634. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Holmes B., Quie P. G., Windhorst D. B., Good R. A. Fatal granulomatous disease of childhood. An inborn abnormality of phagocytic function. Lancet. 1966 Jun 4;1(7449):1225–1228. doi: 10.1016/s0140-6736(66)90238-8. [DOI] [PubMed] [Google Scholar]
  22. Johnson B. C., Moser K., Sassoon H. F. Dietary induction of liver glucose-6-phosphate dehydrogenase in the rat. Proc Soc Exp Biol Med. 1966 Jan;121(1):30–31. doi: 10.3181/00379727-121-30688. [DOI] [PubMed] [Google Scholar]
  23. Johnston R. B., Jr, Baehner R. L. Improvement of leukocyte bactericidal activity in chronic granulomatous disease. Blood. 1970 Mar;35(3):350–355. [PubMed] [Google Scholar]
  24. KIRKMAN H. N., MCCURDY P. R., NAIMAN J. L. FUNCTIONALLY ABNORMAL GLUCOSE-6-PHOSPHATE DEHYDROGENASES. Cold Spring Harb Symp Quant Biol. 1964;29:391–398. doi: 10.1101/sqb.1964.029.01.041. [DOI] [PubMed] [Google Scholar]
  25. Klebanoff S. J. Iodination of bacteria: a bactericidal mechanism. J Exp Med. 1967 Dec 1;126(6):1063–1078. doi: 10.1084/jem.126.6.1063. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Klebanoff S. J., White L. R. Iodination defect in the leukocytes of a patient with chronic granulomatous disease of childhood. N Engl J Med. 1969 Feb 27;280(9):460–466. doi: 10.1056/NEJM196902272800902. [DOI] [PubMed] [Google Scholar]
  27. LINDER D., GARTLER S. M. DISTRIBUTION OF GLUCOSE-6-PHOSPHATE DEHYDROGENASE ELECTROPHORETIC VARIANTS IN DIFFERENT TISSUES OF HETEROZYGOTES. Am J Hum Genet. 1965 May;17:212–220. [PMC free article] [PubMed] [Google Scholar]
  28. LYON M. F. Gene action in the X-chromosome of the mouse (Mus musculus L.). Nature. 1961 Apr 22;190:372–373. doi: 10.1038/190372a0. [DOI] [PubMed] [Google Scholar]
  29. Lehrer R. I., Cline M. J. Leukocyte myeloperoxidase deficiency and disseminated candidiasis: the role of myeloperoxidase in resistance to Candida infection. J Clin Invest. 1969 Aug;48(8):1478–1488. doi: 10.1172/JCI106114. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. MARKS P. A., GROSS R. T. Erythrocyte glucose-6-phosphate dehydrogenase deficiency: evidence of differences between Negroes and Caucasians with respect to this genetically determined trait. J Clin Invest. 1959 Dec;38:2253–2262. doi: 10.1172/JCI104006. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. McRipley R. J., Sbarra A. J. Role of the phagocyte in host-parasite interactions. XI. Relationship between stimulated oxidative metabolism and hydrogen peroxide formation, and intracellular killing. J Bacteriol. 1967 Nov;94(5):1417–1424. doi: 10.1128/jb.94.5.1417-1424.1967. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. NANCE W. E. GENETIC TESTS WITH A SEX-LINKED MARKER: GLUCOSE-6-PHOSPHATE DEHYDROGENASE. Cold Spring Harb Symp Quant Biol. 1964;29:415–425. doi: 10.1101/sqb.1964.029.01.043. [DOI] [PubMed] [Google Scholar]
  33. Paul B. B., Jacobs A. A., Strauss R. R., Sbarra A. J. The role of the phagocyte in host-parasite interactions. XX. Restoration of x-irradiation phagocytic damage by endotoxin or polyadenylic-polyuridylic acids. J Reticuloendothel Soc. 1970 Jun;7(6):743–753. [PubMed] [Google Scholar]
  34. Phillips J., Herring R. M., Goodman H. O., King J. S., Jr Leucocyte alkaline phosphatase and erythrocyte glucose-6-phosphate dehydrogenase in Down's Syndrome. J Med Genet. 1967 Dec;4(4):268–273. doi: 10.1136/jmg.4.4.268. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. RAMOT B., FISHER S., SZEINBERG A., ADAM A., SHEBA C., GAFNI D. A study of subjects with erythrocyte glucose-6-phosphate dehydrogenase deficiency. II. Investigation of leukocyte enzymes. J Clin Invest. 1959 Dec;38:2234–2237. doi: 10.1172/JCI104004. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. RAMOT B., SHEBA C., ADAM A., ASHKENASI I. Erythrocyte glucose-6-phosphate dehydrogenase-deficient subjects: enzyme-level in saliva. Nature. 1960 Mar 26;185:931–931. doi: 10.1038/185931a0. [DOI] [PubMed] [Google Scholar]
  37. RAMOT B., SZEINBERG A., ADAM A., SHEBA C., GAFNI D. A study of subjects with erythrocyte glucose-6-phosphate dehydrogenase deficiency: investigation of platelet enzymes. J Clin Invest. 1959 Sep;38:1659–1661. doi: 10.1172/JCI103943. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. SBARRA A. J., KARNOVSKY M. L. The biochemical basis of phagocytosis. I. Metabolic changes during the ingestion of particles by polymorphonuclear leukocytes. J Biol Chem. 1959 Jun;234(6):1355–1362. [PubMed] [Google Scholar]
  39. Schlegel R. J., Bellanti J. A. Increased susceptibility of males to infection. Lancet. 1969 Oct 18;2(7625):826–827. doi: 10.1016/s0140-6736(69)92278-8. [DOI] [PubMed] [Google Scholar]
  40. WHANG J., FREI E., 3rd, TJIO J. H., CARBONE P. P., BRECHER G. THE DISTRIBUTION OF THE PHILADELPHIA CHROMOSOME IN PATIENTS WITH CHRONIC MYELOGENOUS LEUKEMIA. Blood. 1963 Dec;22:664–673. [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES