Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1973 Nov;52(11):2865–2877. doi: 10.1172/JCI107483

Synthesis of Essential Amino Acids from Their α-Keto Analogues by Perfused Rat Liver and Muscle

Mackenzie Walser 1,2,3,4, Patricia Lund 1,2,3,4, Neil B Ruderman 1,2,3,4, A W Coulter 1,2,3,4
PMCID: PMC302555  PMID: 4748513

Abstract

Most essential amino acids can be replaced by their α-keto-analogues in the diet. These ketoacids have therefore been proposed as substitutes for dietary protein. In order to determine their fate in tissues of normal animals, isolated rat liver and hindquarter (muscle) preparations were perfused with keto-analogues of valine, leucine, isoleucine, methionine, or phenylalanine. When perfused at 1.5-2.0 mM, all five compounds were utilized rapidly by the liver of 48-h starved rats, at rates varying from 49 to 155 μmol/h per 200g rat. The corresponding amino acids appeared in the medium in significantly increased concentrations. Perfusion with phenylpyruvate also led to the appearance of tyrosine. Urea release was unaltered. Measurement of metabolite concentrations in freeze-clamped liver revealed two abnormalities, particularly at ketoacid concentrations of 5 mM or above: a large increase in α-ketoglutarate, and a moderate to marked decrease in tissue glutamine. This decrease was quantitatively sufficient to account for nitrogen appearing in newly synthesized amino acids.

Isolated hindquarters of fed rats were perfused with the same ketoacids at concentrations of 1.3-8.0 mM. All were utilized at rates varying from 1.4 to 7.0 μmol/h per g muscle perfused. The corresponding amino acids were released at greatly increased rates. Alanine and glutamate levels fell in some perfusions, but the principal nitrogen donor in muscle was not identified; the content of glutamine in tissue, and its rate of release into the perfusate remained constant.

Full text

PDF
2869

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aki K., Ogawa K., Ichihara A. Transaminases of branched chain amino acids. IV. Purification and properties of two enzymes from rat liver. Biochim Biophys Acta. 1968 Jun 4;159(2):276–284. doi: 10.1016/0005-2744(68)90076-4. [DOI] [PubMed] [Google Scholar]
  2. Biebuyck J. F., Lund P., Krebs H. A. The effects of halothane (2-bromo-2-chloro-1,1,1-trifluoroethane) on glycolysis and biosynthetic processes of the isolated perfused rat liver. Biochem J. 1972 Jul;128(3):711–720. doi: 10.1042/bj1280711. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bloxam D. L. Nutritional aspects of amino acid metabolism. 2. The effects of starvation on hepatic portal-venous differences in plasma amino acid concentration and on liver amino acid concentrations in the rat. Br J Nutr. 1972 Mar;27(2):233–247. doi: 10.1079/bjn19720090. [DOI] [PubMed] [Google Scholar]
  4. Boisse J., Saudubray J. M., Pham-Huu-Trung, Charpentier C., Castets M., Lemonnier A., Jerome H., Mozziconacci P. La variante intermittente de la leucinose (étude d'une nouvelle observation) Arch Fr Pediatr. 1971 Feb;28(2):161–177. [PubMed] [Google Scholar]
  5. Brosnan J. T., Krebs H. A., Williamson D. H. Effects of ischaemia on metabolite concentrations in rat liver. Biochem J. 1970 Mar;117(1):91–96. doi: 10.1042/bj1170091. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. CERIOTTI G., SPANDRIO L. A spectrophotometric method for determination of urea. Clin Chim Acta. 1963 Mar;8:295–299. doi: 10.1016/0009-8981(63)90171-2. [DOI] [PubMed] [Google Scholar]
  7. Colombo J. P. Plasma glutamine in a phenylketonuric family with normal and mentally defective members. Arch Dis Child. 1971 Oct;46(249):720–721. doi: 10.1136/adc.46.249.720. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Cooper J. L., Meister A. Isolation and properties of highly purified glutamine transaminase. Biochemistry. 1972 Feb 29;11(5):661–671. doi: 10.1021/bi00755a001. [DOI] [PubMed] [Google Scholar]
  9. Efron M. L., Kang E. S., Visakorpi J., Fellers F. X. Effect of elevated plasma phenylalanine levels on other amino acids in phenylketonuric and normal subjects. J Pediatr. 1969 Mar;74(3):399–405. doi: 10.1016/s0022-3476(69)80197-6. [DOI] [PubMed] [Google Scholar]
  10. Felig P., Pozefsky T., Marliss E., Cahill G. F., Jr Alanine: key role in gluconeogenesis. Science. 1970 Feb 13;167(3920):1003–1004. doi: 10.1126/science.167.3920.1003. [DOI] [PubMed] [Google Scholar]
  11. Giordano C., Phillips M. E., De Santo N. G., De Pascale C., Fürst P., Brown C. L., Houghton B. J., Richards P. Utilisation of ketoacid analogues of valine and phenylalanine in health and uraemia. Lancet. 1972 Jan 22;1(7743):178–182. doi: 10.1016/s0140-6736(72)90573-9. [DOI] [PubMed] [Google Scholar]
  12. Gordon R. S. Metabolism of other D- and L-hydroxy acids. Ann N Y Acad Sci. 1965 Jul 31;119(3):927–941. doi: 10.1111/j.1749-6632.1965.tb47453.x. [DOI] [PubMed] [Google Scholar]
  13. Hems R., Ross B. D., Berry M. N., Krebs H. A. Gluconeogenesis in the perfused rat liver. Biochem J. 1966 Nov;101(2):284–292. doi: 10.1042/bj1010284. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Hill A., Macaulay J., Zaleski W. A. Plasma glutamine in phenylketonuria. Clin Biochem. 1972 Sep;5(3):194–196. doi: 10.1016/s0009-9120(72)80031-6. [DOI] [PubMed] [Google Scholar]
  15. Jones E. A., Smallwood R. A., Craigie A., Rosenoer V. M. The enterohepatic circulation of urea nitrogen. Clin Sci. 1969 Dec;37(3):825–836. [PubMed] [Google Scholar]
  16. Krebs H. A., De Gasquet P. Inhibition of gluconeogenesis by alpha-oxo acids. Biochem J. 1964 Jan;90(1):149–154. doi: 10.1042/bj0900149. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. LANER B. W., Jr THE BIOCHEMICAL CONVERSION OF 2-HYDROXY-4-METHYLTHIOBUTYRIC ACID INTO METHIONINE BY THE RAT IN VITRO. Biochem J. 1965 Jun;95:683–687. doi: 10.1042/bj0950683. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. MEISTER A. Studies on d- and tau-alpha-keto-beta-methylvaleric acids. J Biol Chem. 1951 May;190(1):269–276. [PubMed] [Google Scholar]
  19. Mallette L. E., Exton J. H., Park Effects of glucagon on amino acid transport and utilization in the perfused rat liver. J Biol Chem. 1969 Oct 25;244(20):5724–5728. [PubMed] [Google Scholar]
  20. Marliss E. B., Aoki T. T., Pozefsky T., Most A. S., Cahill G. F., Jr Muscle and splanchnic glutmine and glutamate metabolism in postabsorptive andstarved man. J Clin Invest. 1971 Apr;50(4):814–817. doi: 10.1172/JCI106552. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. McKean C. M., Peterson N. A. Glutamine in the phenylketonuric central nervous system. N Engl J Med. 1970 Dec 17;283(25):1364–1367. doi: 10.1056/NEJM197012172832503. [DOI] [PubMed] [Google Scholar]
  22. PATRICK A. D. Maple syrup urine disease. Arch Dis Child. 1961 Jun;36:269–272. doi: 10.1136/adc.36.187.269. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Perkins J. R. Effects of light on the determination of citrulline. Clin Chim Acta. 1971 Nov;35(1):247–250. doi: 10.1016/0009-8981(71)90321-4. [DOI] [PubMed] [Google Scholar]
  24. Perry T. L., Hansen S., Tischler B., Bunting R., Diamond S. Glutamine depletion in phenylketonuria.A possible cause of the mental defect. N Engl J Med. 1970 Apr 2;282(14):761–766. doi: 10.1056/NEJM197004022821401. [DOI] [PubMed] [Google Scholar]
  25. ROWSELL E. V. Transaminations with pyruvate and other alpha-keto acids. Biochem J. 1956 Oct;64(2):246–252. doi: 10.1042/bj0640246. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Richards P., Houghton B. J., Brown C. L., Thompson E. Synthesis of phenylalanine and valine by healthy and uraemic men. Lancet. 1971 Jul 17;2(7716):128–134. doi: 10.1016/s0140-6736(71)92304-x. [DOI] [PubMed] [Google Scholar]
  27. Ruderman N. B., Houghton C. R., Hems R. Evaluation of the isolated perfused rat hindquarter for the study of muscle metabolism. Biochem J. 1971 Sep;124(3):639–651. doi: 10.1042/bj1240639. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Ruderman N. B., Lund P. Amino acid metabolism in skeletal muscle. Regulation of glutamine and alanine release in the perfused rat hindquarter. Isr J Med Sci. 1972 Mar;8(3):295–302. [PubMed] [Google Scholar]
  29. Ruderman N. B., Toews C. J., Lowy C., Vreeland I., Shafrir E. Inhibition of hepatic gluconeogenesis and fatty acid oxidation by pent-4-enoic acid. Am J Physiol. 1970 Jul;219(1):51–57. doi: 10.1152/ajplegacy.1970.219.1.51. [DOI] [PubMed] [Google Scholar]
  30. Schloerb P. R. Essential L-amino acid administration in uremia. Am J Med Sci. 1966 Dec;252(6):650–659. [PubMed] [Google Scholar]
  31. Taylor R. T., Jenkins W. T. Leucine aminotransferase. II. Purification and characterization. J Biol Chem. 1966 Oct 10;241(19):4396–4405. [PubMed] [Google Scholar]
  32. WALSER M., BODENLOS L. J. Urea metabolism in man. J Clin Invest. 1959 Sep;38:1617–1626. doi: 10.1172/JCI103940. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. WILLIAMSON D. H., MELLANBY J., KREBS H. A. Enzymic determination of D(-)-beta-hydroxybutyric acid and acetoacetic acid in blood. Biochem J. 1962 Jan;82:90–96. doi: 10.1042/bj0820090. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. WOLLENBERGER A., RISTAU O., SCHOFFA G. [A simple technic for extremely rapid freezing of large pieces of tissue]. Pflugers Arch Gesamte Physiol Menschen Tiere. 1960;270:399–412. [PubMed] [Google Scholar]
  35. WOOD J. L., COOLEY S. L. Substitution of alpha-keto acids for five amino acids essential for growth of the rat. Proc Soc Exp Biol Med. 1954 Mar;85(3):409–411. doi: 10.3181/00379727-85-20898. [DOI] [PubMed] [Google Scholar]
  36. Walser M., Coulter A. W., Dighe S., Crantz F. R. The effect of keto-analogues of essential amino acids in severe chronic uremia. J Clin Invest. 1973 Mar;52(3):678–690. doi: 10.1172/JCI107229. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Williamson D. H., Lopes-Vieira O., Walker B. Concentrations of free glucogenic amino acids in livers of rats subjected to various metabolic stresses. Biochem J. 1967 Aug;104(2):497–502. doi: 10.1042/bj1040497. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Williamson D. H., Lund P., Krebs H. A. The redox state of free nicotinamide-adenine dinucleotide in the cytoplasm and mitochondria of rat liver. Biochem J. 1967 May;103(2):514–527. doi: 10.1042/bj1030514. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Wong P. W., Berman J. L., Partington M. W., Vickery S. K., O'Flynn M. E., Hsia D. Y. Glutamine in pku. N Engl J Med. 1971 Sep 2;285(10):580–580. [PubMed] [Google Scholar]
  40. YOSHIDA A., FREESE E. PURIFICATION AND CHEMICAL CHARACTERIZATION OF ALANINE DEHYDROGENASE OF BACILLUS SUBTILIS. Biochim Biophys Acta. 1964 Oct 23;92:33–43. doi: 10.1016/0926-6569(64)90266-4. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES