Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1973 Dec;52(12):3190–3200. doi: 10.1172/JCI107519

Fuels, Hormones, and Liver Metabolism at Term and during the Early Postnatal Period in the Rat

J R Girard 1,2,3, G S Cuendet 1,2,3, E B Marliss 1,2,3, A Kervran 1,2,3, M Rieutort 1,2,3, R Assan 1,2,3
PMCID: PMC302595  PMID: 4750449

Abstract

The metabolic response to the first fast experienced by all mammals has been studied in the newborn rat. Levels of fuels and hormones have been compared in the fetal and maternal circulations at term. Then, after cesarean section just before the normal time of birth, sequential changes in the same parameters were quantified during the first 16 h of the neonatal period. No caloric intake was permitted, and the newborns were maintained at 37°C. Activities of three key hepatic enzymes involved in glucose production were estimated.

Marked differences in maternal and fetal hormones and fuels were observed. Lower levels of glucose, free fatty acids, and glycerol but higher levels of lactate, α-amino nitrogen, alanine, and glutamine were present in the fetus. Pyruvate, glutamate, and ketone bodies were not significantly different. The combination of a strikingly higher fetal immunoreactive insulin and a slightly lower immunoreactive glucagon (pancreatic) resulted in a profound elevation in the insulin-to-glucagon ratio, a finding consistent with an organism in an anabolic state.

The rat at birth presents a body composition with respect to fuels available for mobilization and conversion which is dominated by carbohydrate and protein, since little fat is present. However, at birth a transient period of hypoglycemia occurred, associated with a rapid fall in insulin and rise in glucagon, causing reversal of the insulin-to-glucagon relationship toward ratios such as were observed in the mother. After a lag period, hepatic activities of phosphorylase, glucose-6-phosphatase, and phosphoenolpyruvate carboxykinase increased. Concurrent with these enzyme changes, the blood glucose returned to levels at or above those of the fetus. Interestingly, the fall observed in levels of the gluconeogenic precursors, lactate and amino acids, preceded the rise in enzyme activities and restoration of blood glucose. After 4 h, however, hypoglycemia recurred, during a period of decreasing hepatic glycogen content and blood lactate, pyruvate, and glycerol levels but of stable or increasing amino acid concentrations. Hepatic gluconeogenesis in this phase of depleted glycogen stores was insufficient to maintain euglycemia.

Substrates derived from fat showed early changes of smaller magnitude. The rise in free fatty acids which occurred was less than twofold the value at birth, though this rise persisted up to 6 h. Whereas glycerol rose transiently, acetoacetate did not change and β-hydroxybutyrate concentration fell. Both ketone bodies showed a marked rise at 16 h. at a time of diminished free fatty acid levels. Plasma growth hormone, though higher in the fetal than the maternal circulation, showed no consistent change during the period of observation.

The changes in levels of the endocrine pancreatic hormones at birth were appropriate in time, magnitude, and direction to be implicated as prime regulators of the metabolic response during the neonatal period in the rat.

Full text

PDF
3192

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Albano J. D., Ekins R. P., Maritz G., Turner R. C. A sensitive, precise radioimmunoassay of serum insulin relying on charcoal separation of bound and free hormone moieties. Acta Endocrinol (Copenh) 1972 Jul;70(3):487–509. doi: 10.1530/acta.0.0700487. [DOI] [PubMed] [Google Scholar]
  2. Ballard F. J., Hanson R. W. Phosphoenolpyruvate carboxykinase and pyruvate carboxylase in developing rat liver. Biochem J. 1967 Sep;104(3):866–871. doi: 10.1042/bj1040866. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bloom S. R., Johnston D. I. Failure of glucagon release in infants of diabetic mothers. Br Med J. 1972 Nov 25;4(5838):453–454. doi: 10.1136/bmj.4.5838.453. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bossi E., Greenberg R. E. Sources of blood glucose in the rat fetus. Pediatr Res. 1972 Oct;6(10):765–772. doi: 10.1203/00006450-197210000-00004. [DOI] [PubMed] [Google Scholar]
  5. Butcher F. R., Potter V. R. Control of the adenosine 3',5'-monophosphate-adenyl cyclase system in the livers of developing rats. Cancer Res. 1972 Oct;32(10):2141–2147. [PubMed] [Google Scholar]
  6. CHRISTENSEN H. N., CLIFFORD J. B. Early postnatal intensification of hepatic accumulation of amino acids. J Biol Chem. 1963 May;238:1743–1745. [PubMed] [Google Scholar]
  7. Cake M. H., Oliver I. T. The activation of phosphorylase in neonatal rat liver. Eur J Biochem. 1969 Dec;11(3):576–581. doi: 10.1111/j.1432-1033.1969.tb00809.x. [DOI] [PubMed] [Google Scholar]
  8. Cake M. H., Yeung D., Oliver I. T. The control of postnatal hypoglycemia. Suggestions based on experimental observations in neonatal rats. Biol Neonate. 1971;18(3):183–192. doi: 10.1159/000240361. [DOI] [PubMed] [Google Scholar]
  9. Clark C. M., Jr, Beatty B., Allen D. O. Evidence for delayed development of the glucagon receptor of adenylate cyclase in the fetal and neonatal rat heart. J Clin Invest. 1973 May;52(5):1018–1025. doi: 10.1172/JCI107266. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. DAWKINS M. J. GLYCOGEN SYNTHESIS AND BREAKDOWN IN FETAL AND NEWBORN RAT LIVER. Ann N Y Acad Sci. 1963 Dec 30;111:203–211. doi: 10.1111/j.1749-6632.1963.tb36960.x. [DOI] [PubMed] [Google Scholar]
  11. Dierks-Ventling C., Cone A. L. Acetoacetyl--coenzyme A thiolase in brain, liver, and kidney during maturation of the rat. Science. 1971 Apr 23;172(3981):380–382. doi: 10.1126/science.172.3981.380. [DOI] [PubMed] [Google Scholar]
  12. Dierks-Ventling C. Prenatal induction of ketone-body enzymes in the rat. Biol Neonate. 1971;19(4):426–433. doi: 10.1159/000240435. [DOI] [PubMed] [Google Scholar]
  13. Edwards A. V., Silver M. The glycogenolytic response to stimulation of the splanchnic nerves in adrenalectomized calves. J Physiol. 1970 Nov;211(1):109–124. doi: 10.1113/jphysiol.1970.sp009269. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Edwards J. C., Asplund K., Lundqvist G. Glucagon release from the pancreas of the newborn rat. J Endocrinol. 1972 Sep;54(3):493–504. [PubMed] [Google Scholar]
  15. Felix J. M., Jacquot R., Sutter B. C. Insulinemies maternelles et foetales chez le rat. Horm Metab Res. 1969 Jan;1(1):41–42. doi: 10.1055/s-0028-1096825. [DOI] [PubMed] [Google Scholar]
  16. Freinkel N., Metzger B. E., Nitzan M., Hare J. W., Shambaugh G. E., 3rd, Marshall R. T., Surmaczynska B. Z., Nagel T. C. "Accelerated starvation" and mechanisms for the conservation of maternal nitrogen during pregnancy. Isr J Med Sci. 1972 Mar;8(3):426–439. [PubMed] [Google Scholar]
  17. Girard J., Bal D., Assan R. Glucagon secretion during the early postnatal period in the rat. Horm Metab Res. 1972 May;4(3):168–170. doi: 10.1055/s-0028-1094093. [DOI] [PubMed] [Google Scholar]
  18. Girard J., Bal D. Effets du glucagon-zinc sur la glycémie et la teneur en glycogène du foie foetal du rat en fin de gestation. C R Acad Sci Hebd Seances Acad Sci D. 1970 Aug 31;271(9):777–779. [PubMed] [Google Scholar]
  19. Grasso S., Messina A., Saporito N., Reitano G. Serum-insulin response to glucose and aminoacids in the premature infant. Lancet. 1968 Oct 5;2(7571):755–756. doi: 10.1016/s0140-6736(68)90954-9. [DOI] [PubMed] [Google Scholar]
  20. Greengard O., Dewey H. K. Initiation by glucagon of the premature development of tyrosine aminotransferase, serine dehydratase, and glucose-6-phosphatase in fetal rat liver. J Biol Chem. 1967 Jun 25;242(12):2986–2991. [PubMed] [Google Scholar]
  21. Greengard O., Dewey H. K. The premature deposition or lysis of glycogen in livers of fetal rats injected with hydrocortisone or glucagon. Dev Biol. 1970 Mar;21(3):452–461. doi: 10.1016/0012-1606(70)90135-1. [DOI] [PubMed] [Google Scholar]
  22. HUGGETT A. S., NIXON D. A. Use of glucose oxidase, peroxidase, and O-dianisidine in determination of blood and urinary glucose. Lancet. 1957 Aug 24;273(6991):368–370. doi: 10.1016/s0140-6736(57)92595-3. [DOI] [PubMed] [Google Scholar]
  23. Heding L. G. Radioimmunological determination of pancreatic and gut glucagon in plasma. Diabetologia. 1971 Feb;7(1):10–19. doi: 10.1007/BF02346248. [DOI] [PubMed] [Google Scholar]
  24. Ho R. J. Radiochemical assay of long-chain fatty acids using 63Ni as tracer. Anal Biochem. 1970 Jul;36(1):105–113. doi: 10.1016/0003-2697(70)90337-4. [DOI] [PubMed] [Google Scholar]
  25. Hunter D. J. Changes in blood glucose and liver carbohydrate after intra-uterine injection of glucagon into foetal rats. J Endocrinol. 1969 Nov;45(3):367–374. doi: 10.1677/joe.0.0450367. [DOI] [PubMed] [Google Scholar]
  26. Jost A., Picon L. Hormonal control of fetal development and metabolism. Adv Metab Disord. 1970;4:123–184. doi: 10.1016/b978-0-12-027304-1.50010-7. [DOI] [PubMed] [Google Scholar]
  27. Lee L. P., Fritz I. B. Hepatic ketogenesis during development. Can J Biochem. 1971 May;49(5):599–605. doi: 10.1139/o71-086. [DOI] [PubMed] [Google Scholar]
  28. Lernmark A., Wenngren B. I. Insulin and glucagon release from the isolated pancreas of foetal and newborn mice. J Embryol Exp Morphol. 1972 Dec;28(3):607–614. [PubMed] [Google Scholar]
  29. Lockwood E. A., Bailey E. The course of ketosis and the activity of key enzymes of ketogenesis and ketone-body utilization during development of the postnatal rat. Biochem J. 1971 Aug;124(1):249–254. doi: 10.1042/bj1240249. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Luyckx A. S., Massi-Benedetti F., Falorni A., Lefebvre P. J. Presence of pancreatic glucagon in the portal plasma of human neonates. Differences in the insulin and glucagon responses to glucose between normal infants and infants from diabetic mothers. Diabetologia. 1972 Aug;8(4):296–300. doi: 10.1007/BF01225575. [DOI] [PubMed] [Google Scholar]
  31. MALANGEAU P., BOURDON R., NICAISE A. M., MASSON B. [Determination of amino acids in the body fluids]. Ann Biol Clin (Paris) 1963 Jan-Feb;21:3–13. [PubMed] [Google Scholar]
  32. Mackrell D. J., Sokal J. E. Antagonism between the effects of insulin and glucagon on the isolated liver. Diabetes. 1969 Nov;18(11):724–732. doi: 10.2337/diab.18.11.724. [DOI] [PubMed] [Google Scholar]
  33. Marliss E. B., Girardier L., Seydoux J., Wollheim C. B., Kanazawa Y., Orci L., Renold A. E., Porte D., Jr Glucagon release induced by pancreatic nerve stimulation in the dog. J Clin Invest. 1973 May;52(5):1246–1259. doi: 10.1172/JCI107292. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Novák E., Drummond G. I., Skála J., Hahn P. Developmental changes in cyclic AMP, protein kinase, phosphorylase kinase, and phosphorylase in liver, heart, and skeletal muscle of the rat. Arch Biochem Biophys. 1972 Jun;150(2):511–518. doi: 10.1016/0003-9861(72)90069-0. [DOI] [PubMed] [Google Scholar]
  35. Philippidis H., Ballard F. J. The development of gluconeogenesis in rat liver. Effects of glucagon and ether. Biochem J. 1970 Nov;120(2):385–392. doi: 10.1042/bj1200385. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Porte D., Jr, Girardier L., Seydoux J., Kanazawa Y., Posternak J. Neural regulation of insulin secretion in the dog. J Clin Invest. 1973 Jan;52(1):210–214. doi: 10.1172/JCI107168. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Reisner S. H., Aranda J. V., Colle E., Papageorgiou A., Schiff D., Scriver C. R., Stern L. The effect of intravenous glucagon on plasma amino acids in the newborn. Pediatr Res. 1973 Apr;7(4):184–191. doi: 10.1203/00006450-197304000-00021. [DOI] [PubMed] [Google Scholar]
  38. Rieutort M. Dosage radio-immunologique de l'hormone somatotrope de rat à l'aide d'une nouvelle technique de séparation. C R Acad Sci Hebd Seances Acad Sci D. 1972 Jun 26;274(26):3589–3592. [PubMed] [Google Scholar]
  39. Rosa F. Ultrastructural changes produced by glucagon, cyclic 3'5'-AMP and epinephrine on perfused rat livers. J Ultrastruct Res. 1971 Feb;34(3):205–213. doi: 10.1016/s0022-5320(71)80068-0. [DOI] [PubMed] [Google Scholar]
  40. Snell K., Walker D. G. Glucose metabolism in the newborn rat. Temporal studies in vivo. Biochem J. 1973 Apr;132(4):739–752. doi: 10.1042/bj1320739. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Szabo A. J., Grimaldi R. D. The metabolism of the placenta. Adv Metab Disord. 1970;4:185–228. doi: 10.1016/b978-0-12-027304-1.50011-9. [DOI] [PubMed] [Google Scholar]
  42. Unger R. H. Glucagon and the insulin: glucagon ratio in diabetes and other catabolic illnesses. Diabetes. 1971 Dec;20(12):834–838. doi: 10.2337/diab.20.12.834. [DOI] [PubMed] [Google Scholar]
  43. Vernon R. G., Eaton S. W., Walker D. G. Carbohydrate formation from various precursors in noenatal rat liver. Biochem J. 1968 Dec;110(4):725–731. doi: 10.1042/bj1100725. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Wittels B., Bressler R. Lipid metabolism in the newborn heart. J Clin Invest. 1965 Oct;44(10):1639–1646. doi: 10.1172/JCI105270. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Yeung D., Oliver I. T. Development of gluconeogenesis in neonatal rat liver. Effect of premature delivery. Biochem J. 1967 Dec;105(3):1229–1233. doi: 10.1042/bj1051229. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Yeung D., Oliver I. T. Factors affecting the premature induction of phosphopyruvate carboxylase in neonatal rat liver. Biochem J. 1968 Jun;108(2):325–331. doi: 10.1042/bj1080325. [DOI] [PMC free article] [PubMed] [Google Scholar]
  47. Yeung D., Oliver I. T. Gluconeogenesis from amino acids in neonatal rat liver. Biochem J. 1967 Jun;103(3):744–748. doi: 10.1042/bj1030744. [DOI] [PMC free article] [PubMed] [Google Scholar]
  48. Zorzoli A., Turkenkopf I. J., Mueller V. L. Gluconeogenesis in developing rat kidney cortex. Biochem J. 1969 Jan;111(2):181–185. doi: 10.1042/bj1110181. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES