Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1974 May;53(5):1424–1433. doi: 10.1172/JCI107690

The Effect of Glucose on Urinary Cation Excretion during Chronic Extracellular Volume Expansion in Normal Man

Edward J Lennon 1, J Lemann Jr 1, W F Piering 1, L S Larson 1
PMCID: PMC302630  PMID: 4825233

Abstract

Both glucose administration and extracellular volume expansion augment urinary calcium and magnesium excretion. While volume expansion also augments sodium excretion, glucose induces an antinatriuresis. To examine the interrelationships of volume expansion and of glucose administration on sodium, calcium, and magnesium excretion, the effects of glucose were evaluated during clearance studies in the same subjects before and after chronic extracellular volume expansion produced by desoxycorticosterone acetate (DOCA) and a normal dietary sodium intake. The augmentation of UCaV and UMgV by glucose was simply additive to the increments in divalent cation excretion caused by “escape” from the sodium-retaining effects of DOCA. Glucose administration reduced UNaV, an effect exaggerated after DOCA escape and associated with reductions in volume/glomerular filtration rate (V/GFR) and CNa + CH2O/GFR, suggesting augmented proximal tubular reabsorption. Before glucose, UNa was inversely correlated with UG, and after glucose administration CNa/GFR was inversely correlated with TG/GFR. We propose that the availability of glucose in the proximal tubule stimulates Na reabsorption while delaying development of a chloride diffusion potential, thereby inhibiting tubular reabsorption of Ca and Mg.

Full text

PDF
1429

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Alexander E. A., Doner D. W., Jr, Auld R. B., Levinsky N. G. Tubular reabsorption of sodium during acute and chronic volume expansion in man. J Clin Invest. 1972 Sep;51(9):2370–2379. doi: 10.1172/JCI107049. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Baines A. D. Effect of extracellular fluid volume expansion on maximum glucose reabsorption rate and glomerular tubular balance in single rat nephrons. J Clin Invest. 1971 Nov;50(11):2414–2425. doi: 10.1172/JCI106740. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Brunette M., Wen S. F., Evanson R. L., Dirks J. H. Micropuncture study of magnesium reabsorption in the proximal tubule of the dog. Am J Physiol. 1969 Jun;216(6):1510–1516. doi: 10.1152/ajplegacy.1969.216.6.1510. [DOI] [PubMed] [Google Scholar]
  4. Buckalew V. M., Jr, Walker B. R., Puschett J. B., Goldberg M. Effects of increased sodium delivery on distal tubular sodium reabsorption with and without volume expansion in man. J Clin Invest. 1970 Dec;49(12):2336–2344. doi: 10.1172/JCI106452. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Duarte C. G., Watson J. F. Calcium reabsorption in proximal tubule of the dog nephron. Am J Physiol. 1967 Jun;212(6):1355–1360. doi: 10.1152/ajplegacy.1967.212.6.1355. [DOI] [PubMed] [Google Scholar]
  6. Hoffman R. S., Martino J. A., Wahl G., Arky R. A. Effects of fasting and refeeding. II. Tubular sites of sodium reabsorption and effects of oral carbohydrate on potassium, calcium and phosphate excretion. J Lab Clin Med. 1969 Dec;74(6):915–926. [PubMed] [Google Scholar]
  7. Kokko J. P. Proximal tubule potential difference. Dependence on glucose on glucose, HCO 3 , and amino acids. J Clin Invest. 1973 Jun;52(6):1362–1367. doi: 10.1172/JCI107308. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Kurtzman N. A., White M. G., Rogers P. W., Flynn J. J., 3rd Relationship of sodium reabsorption and glomerular filtration rate to renal glucose reabsorption. J Clin Invest. 1972 Jan;51(1):127–133. doi: 10.1172/JCI106782. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. LOGAN J. E., HAIGHT D. E. ENZYMATIC DETERMINATION OF GLUCOSE IN URINE BY AUTOMATION FOLLOWING RAPID REMOVAL OF INHIBITORS BY ION-EXCHANGE RESIN. Clin Chem. 1965 Mar;11:367–377. [PubMed] [Google Scholar]
  10. Lemann J., Jr, Lennon E. J., Piering W. R., Prien E. L., Jr, Ricanati E. S. Evidence that glucose ingestion inhibits net renal tubular reabsorption of calcium and magnesium in man. J Lab Clin Med. 1970 Apr;75(4):578–585. [PubMed] [Google Scholar]
  11. Lemann J., Jr, Piering W. F., Lennon E. J. Possible role of carbohydrate-induced calciuria in calcium oxalate kidney-stone formation. N Engl J Med. 1969 Jan 30;280(5):232–237. doi: 10.1056/NEJM196901302800502. [DOI] [PubMed] [Google Scholar]
  12. Lemann J., Litzow J. R., Lennon E. J. Studies of the mechanism by which chronic metabolic acidosis augments urinary calcium excretion in man. J Clin Invest. 1967 Aug;46(8):1318–1328. doi: 10.1172/JCI105624. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Lennon E. J., Piering W. F. A comparison of the effects of glucose ingestion and NH4Cl acidosis on urinary calcium and magnesium excretion in man. J Clin Invest. 1970 Jul;49(7):1458–1465. doi: 10.1172/JCI106363. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Lindeman R. D., Adler S., Yiengst M. J., Beard E. S. Influence of various nutrients on urinary divalent cation excretion. J Lab Clin Med. 1967 Aug;70(2):236–245. [PubMed] [Google Scholar]
  15. Maruyama T., Hoshi T. The effect of D-glucose on the electrical potential profile across the proximal tubule of newt kidney. Biochim Biophys Acta. 1972 Sep 1;282(1):214–225. doi: 10.1016/0005-2736(72)90327-6. [DOI] [PubMed] [Google Scholar]
  16. Massry S. G., Coburn J. W., Chapman L. W., Kleeman C. R. Effect of NaCl infusion on urinary Ca++ and Mg++ during reduction in their filtered loads. Am J Physiol. 1967 Nov;213(5):1218–1224. doi: 10.1152/ajplegacy.1967.213.5.1218. [DOI] [PubMed] [Google Scholar]
  17. Rastegar A., Agus Z., Connor T. B., Goldberg M. Renal handling of calcium and phosphate during mineralocorticoid "escape" in man. Kidney Int. 1972 Nov;2(5):279–286. doi: 10.1038/ki.1972.107. [DOI] [PubMed] [Google Scholar]
  18. Schloeder F. X., Stinebaugh B. J. Renal tubular sites of natriuresis of fasting and glucose-induced sodium conservation. Metabolism. 1970 Dec;19(12):1119–1128. doi: 10.1016/0026-0495(70)90037-5. [DOI] [PubMed] [Google Scholar]
  19. WALSER M. Calcium clearance as a function of sodium clearance in the dog. Am J Physiol. 1961 May;200:1099–1104. doi: 10.1152/ajplegacy.1961.200.5.1099. [DOI] [PubMed] [Google Scholar]
  20. Willis L. R., Schneider E. G., Lynch R. E., Knox F. G. Effect of chronic alteration of sodium balance on reabsorption by proximal tubule of the dog. Am J Physiol. 1972 Jul;223(1):34–39. doi: 10.1152/ajplegacy.1972.223.1.34. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES