Skip to main content
Infection and Immunity logoLink to Infection and Immunity
. 1993 Feb;61(2):580–587. doi: 10.1128/iai.61.2.580-587.1993

Sequencing of leucocidin R from Staphylococcus aureus P83 suggests that staphylococcal leucocidins and gamma-hemolysin are members of a single, two-component family of toxins.

G Supersac 1, G Prevost 1, Y Piemont 1
PMCID: PMC302767  PMID: 8423088

Abstract

A 2,813-bp HincII-ClaI DNA fragment encodes the two S and F components (LukS-R and LukF-R) of leucocidin R (Luk-R) which are secreted by Staphylococcus aureus P83. The two genes (lukS-R and lukF-R) belong to a single operon. Two peptidic sequences were deduced: LukS-R is a 35,721-Da polypeptide of 315 amino acids, including a signal sequence of 29 residues, and LukF-R is a 36,838-Da polypeptide of 325 amino acids, including a signal sequence of 25 residues. LukS-R and LukF-R were expressed in Escherichia coli and purified from the periplasmic space. Luk-R exerts biological activities on polymorphonuclear cells and on erythrocytes from various animals. Comparison of the amino acid sequence of LukF-R with that of the B component of gamma-hemolysin (HlgB), those of the F and S components of another recently sequenced staphylococcal leucocidin, and those of a few peptides of the F component from Panton-Valentine leucocidin suggests that all four toxins belong to a single, two-component family of toxins.

Full text

PDF
583

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Cribier B., Prévost G., Couppie P., Finck-Barbançon V., Grosshans E., Piémont Y. Staphylococcus aureus leukocidin: a new virulence factor in cutaneous infections? An epidemiological and experimental study. Dermatology. 1992;185(3):175–180. doi: 10.1159/000247443. [DOI] [PubMed] [Google Scholar]
  2. Finck-Barbançon V., Prévost G., Piémont Y. Improved purification of leukocidin from Staphylococcus aureus and toxin distribution among hospital strains. Res Microbiol. 1991 Jan;142(1):75–85. doi: 10.1016/0923-2508(91)90099-v. [DOI] [PubMed] [Google Scholar]
  3. GLADSTONE G. P., VAN HEYNINGEN W. E. Staphylococcal leucocidins. Br J Exp Pathol. 1957 Apr;38(2):123–137. [PMC free article] [PubMed] [Google Scholar]
  4. Guyonnet F., Plommet M. Hémolysine gamma de staphylococcus aureus: purification et propriétés. Ann Inst Pasteur (Paris) 1970 Jan;118(1):19–33. [PubMed] [Google Scholar]
  5. Kornblum J. S., Projan S. J., Moghazeh S. L., Novick R. P. A rapid method to quantitate non-labeled RNA species in bacterial cells. Gene. 1988;63(1):75–85. doi: 10.1016/0378-1119(88)90547-1. [DOI] [PubMed] [Google Scholar]
  6. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  7. Loeffler D. A., Schat K. A., Norcross N. L. Use of 51Cr release to measure the cytotoxic effects of staphylococcal leukocidin and toxin neutralization on bovine leukocytes. J Clin Microbiol. 1986 Mar;23(3):416–420. doi: 10.1128/jcm.23.3.416-420.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Noda M., Hirayama T., Kato I., Matsuda F. Crystallization and properties of staphylococcal leukocidin. Biochim Biophys Acta. 1980 Nov 17;633(1):33–44. doi: 10.1016/0304-4165(80)90035-5. [DOI] [PubMed] [Google Scholar]
  9. Noda M., Hirayama T., Matsuda F., Kato I. An early effect of the S component of staphylococcal leukocidin on methylation of phospholipid in various leukocytes. Infect Immun. 1985 Oct;50(1):142–145. doi: 10.1128/iai.50.1.142-145.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Phonimdaeng P., O'Reilly M., Nowlan P., Bramley A. J., Foster T. J. The coagulase of Staphylococcus aureus 8325-4. Sequence analysis and virulence of site-specific coagulase-deficient mutants. Mol Microbiol. 1990 Mar;4(3):393–404. doi: 10.1111/j.1365-2958.1990.tb00606.x. [DOI] [PubMed] [Google Scholar]
  11. Prevost G., Jaulhac B., Piemont Y. DNA fingerprinting by pulsed-field gel electrophoresis is more effective than ribotyping in distinguishing among methicillin-resistant Staphylococcus aureus isolates. J Clin Microbiol. 1992 Apr;30(4):967–973. doi: 10.1128/jcm.30.4.967-973.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Rahman A., Izaki K., Kato I., Kamio Y. Nucleotide sequence of leukocidin S-component gene (lukS) from methicillin resistant Staphylococcus aureus. Biochem Biophys Res Commun. 1991 Nov 27;181(1):138–144. doi: 10.1016/s0006-291x(05)81392-0. [DOI] [PubMed] [Google Scholar]
  13. Rahman A., Nariya H., Izaki K., Kato I., Kamio Y. Molecular cloning and nucleotide sequence of leukocidin F-component gene (lukF) from methicillin resistant Staphylococcus aureus. Biochem Biophys Res Commun. 1992 Apr 30;184(2):640–646. doi: 10.1016/0006-291x(92)90637-z. [DOI] [PubMed] [Google Scholar]
  14. Rifai S., Barbancon V., Prevost G., Piemont Y. Synthetic exfoliative toxin A and B DNA probes for detection of toxigenic Staphylococcus aureus strains. J Clin Microbiol. 1989 Mar;27(3):504–506. doi: 10.1128/jcm.27.3.504-506.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Roth J. A., Kaeberle M. L. Evaluation of bovine polymorphonuclear leukocyte function. Vet Immunol Immunopathol. 1981 Apr;2(2):157–174. doi: 10.1016/0165-2427(81)90047-7. [DOI] [PubMed] [Google Scholar]
  16. Soboll H., Ito A., Schaeg W., Blobel H. Leukozidin von Staphylokokken verschiedener Herkunft. Zentralbl Bakteriol Orig A. 1973 Jul;224(2):184–193. [PubMed] [Google Scholar]
  17. Southern E. M. Detection of specific sequences among DNA fragments separated by gel electrophoresis. J Mol Biol. 1975 Nov 5;98(3):503–517. doi: 10.1016/s0022-2836(75)80083-0. [DOI] [PubMed] [Google Scholar]
  18. Speck D., Ohsawa I., Gloeckler R., Zinsius M., Bernard S., Ledoux C., Kisou T., Kamogawa K., Lemoine Y. Isolation of Bacillus sphaericus biotin synthesis control mutants: evidence for transcriptional regulation of bio genes. Gene. 1991 Dec 1;108(1):39–45. doi: 10.1016/0378-1119(91)90485-t. [DOI] [PubMed] [Google Scholar]
  19. Tabor S., Richardson C. C. DNA sequence analysis with a modified bacteriophage T7 DNA polymerase. Proc Natl Acad Sci U S A. 1987 Jul;84(14):4767–4771. doi: 10.1073/pnas.84.14.4767. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Taylor A. G., Bernheimer A. W. Further characterization of staphylococcal gamma-hemolysin. Infect Immun. 1974 Jul;10(1):54–59. doi: 10.1128/iai.10.1.54-59.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Thomas P. S. Hybridization of denatured RNA and small DNA fragments transferred to nitrocellulose. Proc Natl Acad Sci U S A. 1980 Sep;77(9):5201–5205. doi: 10.1073/pnas.77.9.5201. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Towbin H., Staehelin T., Gordon J. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci U S A. 1979 Sep;76(9):4350–4354. doi: 10.1073/pnas.76.9.4350. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. WOODIN A. M. Purification of the two components of leucocidin from Staphylococcus aureus. Biochem J. 1960 Apr;75:158–165. doi: 10.1042/bj0750158. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Infection and Immunity are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES