Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1988 Aug;82(2):700–705. doi: 10.1172/JCI113650

A common neoepitope is created when the reactive center of C1-inhibitor is cleaved by plasma kallikrein, activated factor XII fragment, C1 esterase, or neutrophil elastase.

A de Agostini 1, P A Patston 1, V Marottoli 1, S Carrel 1, P C Harpel 1, M Schapira 1
PMCID: PMC303566  PMID: 2457036

Abstract

The reactive center of C1-inhibitor, a plasma protease inhibitor that belongs to the serpin superfamily, is located on a peptide loop which is highly susceptible to proteolytic cleavage. With plasma kallikrein, C1s and beta-Factor XIIa, this cleavage occurs at the reactive site residue P1 (Arg444); with neutrophil elastase, it takes place near P1, probably at residue P3 (Val442). After these cleavages, C1-inhibitor is inactivated and its conformation is modified. Moreover, in vivo, cleaved C1-inhibitor is removed from the blood stream more rapidly than the intact serpin, which suggests that proteolysis unmasks sites responsible for cellular recognition and the uptake of the cleaved inhibitor. In the study reported here, we show, using an MAb, that an identical neoepitope is created on C1-inhibitor after the cleavage of its exposed loop by plasma kallikrein, C1s, beta-Factor XIIa, and by neutrophil elastase.

Full text

PDF
701

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Berzofsky J. A. Intrinsic and extrinsic factors in protein antigenic structure. Science. 1985 Sep 6;229(4717):932–940. doi: 10.1126/science.2410982. [DOI] [PubMed] [Google Scholar]
  2. Bock S. C., Skriver K., Nielsen E., Thøgersen H. C., Wiman B., Donaldson V. H., Eddy R. L., Marrinan J., Radziejewska E., Huber R. Human C1 inhibitor: primary structure, cDNA cloning, and chromosomal localization. Biochemistry. 1986 Jul 29;25(15):4292–4301. doi: 10.1021/bi00363a018. [DOI] [PubMed] [Google Scholar]
  3. Brower M. S., Harpel P. C. Proteolytic cleavage and inactivation of alpha 2-plasmin inhibitor and C1 inactivator by human polymorphonuclear leukocyte elastase. J Biol Chem. 1982 Aug 25;257(16):9849–9854. [PubMed] [Google Scholar]
  4. Burger D., Schleuning W. D., Schapira M. Human plasma prekallikrein. Immunoaffinity purification and activation to alpha- and beta-kallikrein. J Biol Chem. 1986 Jan 5;261(1):324–327. [PubMed] [Google Scholar]
  5. Carrell R. W., Owen M. C. Plakalbumin, alpha 1-antitrypsin, antithrombin and the mechanism of inflammatory thrombosis. Nature. 1985 Oct 24;317(6039):730–732. doi: 10.1038/317730a0. [DOI] [PubMed] [Google Scholar]
  6. Courtney M., Buchwalder A., Tessier L. H., Jaye M., Benavente A., Balland A., Kohli V., Lathe R., Tolstoshev P., Lecocq J. P. High-level production of biologically active human alpha 1-antitrypsin in Escherichia coli. Proc Natl Acad Sci U S A. 1984 Feb;81(3):669–673. doi: 10.1073/pnas.81.3.669. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. DONALDSON V. H., EVANS R. R. A BIOCHEMICAL ABNORMALITY IN HEREDIATRY ANGIONEUROTIC EDEMA: ABSENCE OF SERUM INHIBITOR OF C' 1-ESTERASE. Am J Med. 1963 Jul;35:37–44. doi: 10.1016/0002-9343(63)90162-1. [DOI] [PubMed] [Google Scholar]
  8. EGEBERG O. INHERITED ANTITHROMBIN DEFICIENCY CAUSING THROMBOPHILIA. Thromb Diath Haemorrh. 1965 Jun 15;13:516–530. [PubMed] [Google Scholar]
  9. Fuchs H. E., Shifman M. A., Pizzo S. V. In vivo catabolism of alpha 1-proteinase inhibitor-trypsin, antithrombin III-thrombin and alpha 2-macroglobulin-methylamine. Biochim Biophys Acta. 1982 May 27;716(2):151–157. doi: 10.1016/0304-4165(82)90263-x. [DOI] [PubMed] [Google Scholar]
  10. Gettins P., Harten B. Properties of thrombin- and elastase-modified human antithrombin III. Biochemistry. 1988 May 17;27(10):3634–3639. doi: 10.1021/bi00410a017. [DOI] [PubMed] [Google Scholar]
  11. Gonias S. L., Fuchs H. E., Pizzo S. V. A unique pathway for the plasma elimination of alpha 2-antiplasmin-protease complexes in mice. Thromb Haemost. 1982 Oct 29;48(2):208–210. [PubMed] [Google Scholar]
  12. Harpel P. C., Cooper N. R. Studies on human plasma C1 inactivator-enzyme interactions. I. Mechanisms of interaction with C1s, plasmin, and trypsin. J Clin Invest. 1975 Mar;55(3):593–604. doi: 10.1172/JCI107967. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Lachmann P. J., Rosen F. S. The catabolism of C1(-)-inhibitor and the pathogenesis of hereditary angio-edema. Acta Pathol Microbiol Immunol Scand Suppl. 1984;284:35–39. [PubMed] [Google Scholar]
  14. Lennick M., Brew S. A., Ingham K. C. Changes in protein conformation and stability accompany complex formation between human C1 inhibitor and C1-s. Biochemistry. 1985 May 7;24(10):2561–2568. doi: 10.1021/bi00331a025. [DOI] [PubMed] [Google Scholar]
  15. Loebermann H., Tokuoka R., Deisenhofer J., Huber R. Human alpha 1-proteinase inhibitor. Crystal structure analysis of two crystal modifications, molecular model and preliminary analysis of the implications for function. J Mol Biol. 1984 Aug 15;177(3):531–557. [PubMed] [Google Scholar]
  16. Medicus R. G., Chapuis R. M. The first component of complement. I. Purification and properties of native C1. J Immunol. 1980 Jul;125(1):390–395. [PubMed] [Google Scholar]
  17. PENSKY J., LEVY L. R., LEPOW I. H. Partial purification of a serum inhibitor of C'1-esterase. J Biol Chem. 1961 Jun;236:1674–1679. [PubMed] [Google Scholar]
  18. Perlmutter D. H., Travis J., Punsal P. I. Elastase regulates the synthesis of its inhibitor, alpha 1-proteinase inhibitor, and exaggerates the defect in homozygous PiZZ alpha 1 PI deficiency. J Clin Invest. 1988 Jun;81(6):1774–1780. doi: 10.1172/JCI113519. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Quastel M., Harrison R., Cicardi M., Alper C. A., Rosen F. S. Behavior in vivo of normal and dysfunctional C1 inhibitor in normal subjects and patients with hereditary angioneurotic edema. J Clin Invest. 1983 Apr;71(4):1041–1046. doi: 10.1172/JCI110831. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Ratnoff O. D., Pensky J., Ogston D., Naff G. B. The inhibition of plasmin, plasma kallikrein, plasma permeability factor, and the C'1r subcomponent of the first component of complement by serum C'1 esterase inhibitor. J Exp Med. 1969 Feb 1;129(2):315–331. doi: 10.1084/jem.129.2.315. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Salvesen G. S., Catanese J. J., Kress L. F., Travis J. Primary structure of the reactive site of human C1-inhibitor. J Biol Chem. 1985 Feb 25;260(4):2432–2436. [PubMed] [Google Scholar]
  22. Schapira M., Scott C. F., Colman R. W. Protection of human plasma kallikrein from inactivation by C1 inhibitor and other protease inhibitors. The role of high molecular weight kininogen. Biochemistry. 1981 May 12;20(10):2738–2743. doi: 10.1021/bi00513a006. [DOI] [PubMed] [Google Scholar]
  23. Schapira M., de Agostini A., Colman R. W. C1 inhibitor: the predominant inhibitor of plasma kallikrein. Methods Enzymol. 1988;163:179–185. doi: 10.1016/0076-6879(88)63018-7. [DOI] [PubMed] [Google Scholar]
  24. Sela M. Antigenicity: some molecular aspects. Science. 1969 Dec 12;166(3911):1365–1374. doi: 10.1126/science.166.3911.1365. [DOI] [PubMed] [Google Scholar]
  25. Shifman M. A., Pizzo S. V. The in vivo metabolism of antithrombin III and antithrombin III complexes. J Biol Chem. 1982 Mar 25;257(6):3243–3248. [PubMed] [Google Scholar]
  26. Towbin H., Staehelin T., Gordon J. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci U S A. 1979 Sep;76(9):4350–4354. doi: 10.1073/pnas.76.9.4350. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Travis J., Salvesen G. S. Human plasma proteinase inhibitors. Annu Rev Biochem. 1983;52:655–709. doi: 10.1146/annurev.bi.52.070183.003255. [DOI] [PubMed] [Google Scholar]
  28. Villanueva G., Danishefsky I. Conformational changes accompanying the binding of antithrombin III to thrombin. Biochemistry. 1979 Mar 6;18(5):810–817. doi: 10.1021/bi00572a011. [DOI] [PubMed] [Google Scholar]
  29. Virca G. D., Metz G., Schnebli H. P. Similarities between human and rat leukocyte elastase and cathepsin G. Eur J Biochem. 1984 Oct 1;144(1):1–9. doi: 10.1111/j.1432-1033.1984.tb08423.x. [DOI] [PubMed] [Google Scholar]
  30. Weiss R., Silverberg M., Kaplan A. P. The effect of C1 inhibitor upon Hageman factor autoactivation. Blood. 1986 Jul;68(1):239–243. [PubMed] [Google Scholar]
  31. Weiss V., Engel J. Heparin-stimulated modification of C1-inhibitor by subcomponent C1s of human complement. Hoppe Seylers Z Physiol Chem. 1983 Mar;364(3):295–301. [PubMed] [Google Scholar]
  32. Woo P., Lachmann P. J., Harrison R. A., Amos N., Cooper C., Rosen F. S. Simultaneous turnover of normal and dysfunctional C1 inhibitor as a probe of in vivo activation of C1 and contact activatable proteases. Clin Exp Immunol. 1985 Jul;61(1):1–8. [PMC free article] [PubMed] [Google Scholar]
  33. de Agostini A., Lijnen H. R., Pixley R. A., Colman R. W., Schapira M. Inactivation of factor XII active fragment in normal plasma. Predominant role of C-1-inhibitor. J Clin Invest. 1984 Jun;73(6):1542–1549. doi: 10.1172/JCI111360. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. de Agostini A., Schapira M., Wachtfogel Y. T., Colman R. W., Carrel S. Human plasma kallikrein and C1 inhibitor form a complex possessing an epitope that is not detectable on the parent molecules: demonstration using a monoclonal antibody. Proc Natl Acad Sci U S A. 1985 Aug;82(15):5190–5193. doi: 10.1073/pnas.82.15.5190. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. van der Graaf F., Koedam J. A., Griffin J. H., Bouma B. N. Interaction of human plasma kallikrein and its light chain with C1 inhibitor. Biochemistry. 1983 Sep 27;22(20):4860–4866. doi: 10.1021/bi00289a037. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES