Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1988 Aug;82(2):735–738. doi: 10.1172/JCI113655

Increased expression of basement membrane components in human endothelial cells cultured in high glucose.

E Cagliero 1, M Maiello 1, D Boeri 1, S Roy 1, M Lorenzi 1
PMCID: PMC303571  PMID: 3403725

Abstract

Although the degree of hyperglycemia is a powerful and independent risk factor for diabetic microvascular disease, it has not been established if and how high glucose per se can induce the typical lesions of microangiopathy. We have investigated in human vascular endothelial cells the expression of messenger RNA (mRNA) for collagen type IV and fibronectin, the two glycoproteins characteristically increased in diabetic basement membranes. In 12 confluent primary cultures exposed for 11 +/- 1 d (mean +/- SD) to 30 mM glucose and exhibiting cell number and thymidine incorporation similar to control cultures, the levels of collagen IV and fibronectin mRNA were, respectively, 238 +/- 140 and 221 +/- 231 percent of control (P less than 0.01). The effects of high glucose were selective (the levels of collagen I and c-myc mRNA remained unchanged), independent of the proliferative activity of the cultures and of the plating substratum, and maintained throughout multiple passages. However, several days of exposure to high glucose were required before their appearance. These observations establish that high glucose is a perturbation sufficient to mimic the effects of diabetes on the regulation of basement membrane components and propose that modifications in gene expression may pertain to the chain of events leading to diabetic angiopathy.

Full text

PDF
735

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bohman S. O., Tydén G., Wilczek H., Lundgren G., Jaremko G., Gunnarsson R., Ostman J., Groth C. G. Prevention of kidney graft diabetic nephropathy by pancreas transplantation in man. Diabetes. 1985 Mar;34(3):306–308. doi: 10.2337/diab.34.3.306. [DOI] [PubMed] [Google Scholar]
  2. Brownlee M., Spiro R. G. Glomerular basement membrane metabolism in the diabetic rat. In vivo studies. Diabetes. 1979 Feb;28(2):121–125. doi: 10.2337/diab.28.2.121. [DOI] [PubMed] [Google Scholar]
  3. Bruneval P., Foidart J. M., Nochy D., Camilleri J. P., Bariety J. Glomerular matrix proteins in nodular glomerulosclerosis in association with light chain deposition disease and diabetes mellitus. Hum Pathol. 1985 May;16(5):477–484. doi: 10.1016/s0046-8177(85)80086-1. [DOI] [PubMed] [Google Scholar]
  4. Chirgwin J. M., Przybyla A. E., MacDonald R. J., Rutter W. J. Isolation of biologically active ribonucleic acid from sources enriched in ribonuclease. Biochemistry. 1979 Nov 27;18(24):5294–5299. doi: 10.1021/bi00591a005. [DOI] [PubMed] [Google Scholar]
  5. Cohen M. P., Saini R., Klepser H., Vasanthi L. G. Fibronectin binding to glomerular basement membrane is altered in diabetes. Diabetes. 1987 Jun;36(6):758–763. doi: 10.2337/diab.36.6.758. [DOI] [PubMed] [Google Scholar]
  6. Engerman R. L., Kern T. S. Experimental galactosemia produces diabetic-like retinopathy. Diabetes. 1984 Jan;33(1):97–100. doi: 10.2337/diab.33.1.97. [DOI] [PubMed] [Google Scholar]
  7. Falk R. J., Scheinman J. I., Mauer S. M., Michael A. F. Polyantigenic expansion of basement membrane constituents in diabetic nephropathy. Diabetes. 1983 May;32 (Suppl 2):34–39. doi: 10.2337/diab.32.2.s34. [DOI] [PubMed] [Google Scholar]
  8. Holliday R. The inheritance of epigenetic defects. Science. 1987 Oct 9;238(4824):163–170. doi: 10.1126/science.3310230. [DOI] [PubMed] [Google Scholar]
  9. Jaffe E. A., Nachman R. L., Becker C. G., Minick C. R. Culture of human endothelial cells derived from umbilical veins. Identification by morphologic and immunologic criteria. J Clin Invest. 1973 Nov;52(11):2745–2756. doi: 10.1172/JCI107470. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Jaye M., McConathy E., Drohan W., Tong B., Deuel T., Maciag T. Modulation of the sis gene transcript during endothelial cell differentiation in vitro. Science. 1985 May 17;228(4701):882–885. doi: 10.1126/science.3890179. [DOI] [PubMed] [Google Scholar]
  11. Karam J. H., Rosenthal M., O'Donnell J. J., Tsalikian E., Lorenzi M., Gerich J. E., Siperstein M. D., Forsham P. H. Discordance of diabetic microangiopathy in identical twins. Diabetes. 1976 Jan;25(1):24–28. doi: 10.2337/diab.25.1.24. [DOI] [PubMed] [Google Scholar]
  12. Lorenzi M., Cagliero E., Toledo S. Glucose toxicity for human endothelial cells in culture. Delayed replication, disturbed cell cycle, and accelerated death. Diabetes. 1985 Jul;34(7):621–627. doi: 10.2337/diab.34.7.621. [DOI] [PubMed] [Google Scholar]
  13. Lorenzi M., Montisano D. F., Toledo S., Barrieux A. High glucose induces DNA damage in cultured human endothelial cells. J Clin Invest. 1986 Jan;77(1):322–325. doi: 10.1172/JCI112295. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Lorenzi M., Nordberg J. A., Toledo S. High glucose prolongs cell-cycle traversal of cultured human endothelial cells. Diabetes. 1987 Nov;36(11):1261–1267. doi: 10.2337/diab.36.11.1261. [DOI] [PubMed] [Google Scholar]
  15. Lorenzi M., Toledo S. Myo-inositol enhances the proliferation of human endothelial cells in culture but fails to prevent the delay induced by high glucose. Metabolism. 1986 Sep;35(9):824–829. doi: 10.1016/0026-0495(86)90223-4. [DOI] [PubMed] [Google Scholar]
  16. Myers J. C., Chu M. L., Faro S. H., Clark W. J., Prockop D. J., Ramirez F. Cloning a cDNA for the pro-alpha 2 chain of human type I collagen. Proc Natl Acad Sci U S A. 1981 Jun;78(6):3516–3520. doi: 10.1073/pnas.78.6.3516. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Nathan D. M., Singer D. E., Godine J. E., Harrington C. H., Perlmuter L. C. Retinopathy in older type II diabetics. Association with glucose control. Diabetes. 1986 Jul;35(7):797–801. doi: 10.2337/diab.35.7.797. [DOI] [PubMed] [Google Scholar]
  18. Oldberg A., Linney E., Ruoslahti E. Molecular cloning and nucleotide sequence of a cDNA clone coding for the cell attachment domain in human fibronectin. J Biol Chem. 1983 Sep 10;258(17):10193–10196. [PubMed] [Google Scholar]
  19. Phan-Thanh L., Robert L., Derouette J. C., Labat-Robert J. Increased biosynthesis and processing of fibronectin in fibroblasts from diabetic mice. Proc Natl Acad Sci U S A. 1987 Apr;84(7):1911–1915. doi: 10.1073/pnas.84.7.1911. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Reddi A. S. Collagen metabolism in the retina of normal and diabetic rats. Exp Eye Res. 1985 Sep;41(3):345–352. doi: 10.1016/s0014-4835(85)80025-7. [DOI] [PubMed] [Google Scholar]
  21. Robison W. G., Jr, Kador P. F., Kinoshita J. H. Retinal capillaries: basement membrane thickening by galactosemia prevented with aldose reductase inhibitor. Science. 1983 Sep 16;221(4616):1177–1179. doi: 10.1126/science.6612330. [DOI] [PubMed] [Google Scholar]
  22. Schimke R. T., Sherwood S. W., Hill A. B., Johnston R. N. Overreplication and recombination of DNA in higher eukaryotes: potential consequences and biological implications. Proc Natl Acad Sci U S A. 1986 Apr;83(7):2157–2161. doi: 10.1073/pnas.83.7.2157. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Steffes M. W., Sutherland D. E., Goetz F. C., Rich S. S., Mauer S. M. Studies of kidney and muscle biopsy specimens from identical twins discordant for type I diabetes mellitus. N Engl J Med. 1985 May 16;312(20):1282–1287. doi: 10.1056/NEJM198505163122003. [DOI] [PubMed] [Google Scholar]
  24. Thompson C. B., Challoner P. B., Neiman P. E., Groudine M. Levels of c-myc oncogene mRNA are invariant throughout the cell cycle. 1985 Mar 28-Apr 3Nature. 314(6009):363–366. doi: 10.1038/314363a0. [DOI] [PubMed] [Google Scholar]
  25. Weber B., Burger W., Hartmann R., Hövener G., Malchus R., Oberdisse U. Risk factors for the development of retinopathy in children and adolescents with type 1 (insulin-dependent) diabetes mellitus. Diabetologia. 1986 Jan;29(1):23–29. doi: 10.1007/BF02427276. [DOI] [PubMed] [Google Scholar]
  26. Weil D., Bernard M., Gargano S., Ramirez F. The pro alpha 2(V) collagen gene is evolutionarily related to the major fibrillar-forming collagens. Nucleic Acids Res. 1987 Jan 12;15(1):181–198. doi: 10.1093/nar/15.1.181. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Weiss M. A., Ooi B. S., Ooi Y. M., Engvall E., Ruoslahti E. Immunofluorescent localization of fibronectin in the human kidney. Lab Invest. 1979 Oct;41(4):340–347. [PubMed] [Google Scholar]
  28. West K. M., Erdreich L. J., Stober J. A. A detailed study of risk factors for retinopathy and nephropathy in diabetes. Diabetes. 1980 Jul;29(7):501–508. doi: 10.2337/diab.29.7.501. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES