Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1989 Mar;83(3):897–903. doi: 10.1172/JCI113974

Molybdenum cofactor biosynthesis in humans. Identification of two complementation groups of cofactor-deficient patients and preliminary characterization of a diffusible molybdopterin precursor.

J L Johnson 1, M M Wuebbens 1, R Mandell 1, V E Shih 1
PMCID: PMC303764  PMID: 2522104

Abstract

Molybdenum cofactor deficiency is a devastating disease with affected patients displaying the symptoms of a combined deficiency of sulfite oxidase and xanthine dehydrogenase. Because of the extreme lability of the isolated, functional molybdenum cofactor, direct cofactor replacement therapy is not feasible, and a search for stable biosynthetic intermediates was undertaken. From studies of cocultured fibroblasts from affected individuals, two complementation groups were identified. Coculture of group A and group B cells, without heterokaryon formation, led to the appearance of active sulfite oxidase. Use of conditioned media indicated that a relatively stable, diffusible precursor produced by group B cells could be used to repair sulfite oxidase in group A recipient cells. Although the extremely low levels of precursor produced by group B cells preclude its direct characterization, studies with a heterologous, in vitro reconstitution system suggest that the precursor that accumulates in group B cells is the same as a molybdopterin precursor identified in the Neurospora crassa molybdopterin mutant nit-1, and that a converting enzyme is present in group A cells which catalyzes an activation reaction analogous to that of a converting enzyme identified in the Escherichia coli molybdopterin mutant ChlA1.

Full text

PDF
901

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Amy N. K., Rajagopalan K. V. Characterization of molybdenum cofactor from Escherichia coli. J Bacteriol. 1979 Oct;140(1):114–124. doi: 10.1128/jb.140.1.114-124.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Ben-Yoseph Y., Baylerian M. S., Momoi T., Nadler H. L. Thermal activation of hexosaminidase A in a genetic compound with Tay-Sachs disease. J Inherit Metab Dis. 1983;6(3):95–100. doi: 10.1007/BF01800733. [DOI] [PubMed] [Google Scholar]
  3. Duran M., Beemer F. A., van de Heiden C., Korteland J., de Bree P. K., Brink M., Wadman S. K., Lombeck I. Combined deficiency of xanthine oxidase and sulphite oxidase: a defect of molybdenum metabolism or transport? J Inherit Metab Dis. 1978;1(4):175–178. doi: 10.1007/BF01805591. [DOI] [PubMed] [Google Scholar]
  4. Hawkes T. R., Bray R. C. Quantitative transfer of the molybdenum cofactor from xanthine oxidase and from sulphite oxidase to the deficient enzyme of the nit-1 mutant of Neurospora crassa to yield active nitrate reductase. Biochem J. 1984 Apr 15;219(2):481–493. doi: 10.1042/bj2190481. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Johnson J. L., Hainline B. E., Rajagopalan K. V., Arison B. H. The pterin component of the molybdenum cofactor. Structural characterization of two fluorescent derivatives. J Biol Chem. 1984 May 10;259(9):5414–5422. [PubMed] [Google Scholar]
  6. Johnson J. L., Rajagopalan K. V. Structural and metabolic relationship between the molybdenum cofactor and urothione. Proc Natl Acad Sci U S A. 1982 Nov;79(22):6856–6860. doi: 10.1073/pnas.79.22.6856. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Johnson J. L., Waud W. R., Rajagopalan K. V., Duran M., Beemer F. A., Wadman S. K. Inborn errors of molybdenum metabolism: combined deficiencies of sulfite oxidase and xanthine dehydrogenase in a patient lacking the molybdenum cofactor. Proc Natl Acad Sci U S A. 1980 Jun;77(6):3715–3719. doi: 10.1073/pnas.77.6.3715. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Johnson J. L., Wuebbens M. M., Mandell R., Shih V. E. Molybdenum cofactor deficiency in a patient previously characterized as deficient in sulfite oxidase. Biochem Med Metab Biol. 1988 Aug;40(1):86–93. doi: 10.1016/0885-4505(88)90108-9. [DOI] [PubMed] [Google Scholar]
  9. Johnson M. E., Rajagopalan K. V. In vitro system for molybdopterin biosynthesis. J Bacteriol. 1987 Jan;169(1):110–116. doi: 10.1128/jb.169.1.110-116.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Johnson M. E., Rajagopalan K. V. Involvement of chlA, E, M, and N loci in Escherichia coli molybdopterin biosynthesis. J Bacteriol. 1987 Jan;169(1):117–125. doi: 10.1128/jb.169.1.117-125.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Kramer S. P., Johnson J. L., Ribeiro A. A., Millington D. S., Rajagopalan K. V. The structure of the molybdenum cofactor. Characterization of di-(carboxamidomethyl)molybdopterin from sulfite oxidase and xanthine oxidase. J Biol Chem. 1987 Dec 5;262(34):16357–16363. [PubMed] [Google Scholar]
  12. Ogier H., Saudubray J. M., Charpentier C., Munnich A., Perignon J. L., Kesseler A., Frezal J. Double déficit en sulfite et xanthine oxydase, cause d'encéphalopathie due à une anomalie héréditaire du métabolisme du molybdène. Ann Med Interne (Paris) 1982;133(8):594–596. [PubMed] [Google Scholar]
  13. Ogier H., Wadman S. K., Johnson J. L., Saudubray J. M., Duran M., Boue J., Munnich A., Charpentier C. Antenatal diagnosis of combined xanthine and sulphite oxidase deficiencies. Lancet. 1983 Dec 10;2(8363):1363–1364. doi: 10.1016/s0140-6736(83)91118-2. [DOI] [PubMed] [Google Scholar]
  14. Shih V. E., Abroms I. F., Johnson J. L., Carney M., Mandell R., Robb R. M., Cloherty J. P., Rajagopalan K. V. Sulfite oxidase deficiency. Biochemical and clinical investigations of a hereditary metabolic disorder in sulfur metabolism. N Engl J Med. 1977 Nov 10;297(19):1022–1028. doi: 10.1056/NEJM197711102971902. [DOI] [PubMed] [Google Scholar]
  15. Shih V. E., Mandell R., Herzfeld A. Defective ornithine metabolism in cultured skin fibroblasts from patients with the syndrome of hyperornithinemia, hyperammonemia and homocitrullinuria. Clin Chim Acta. 1982 Feb 5;118(2-3):149–157. doi: 10.1016/0009-8981(82)90002-x. [DOI] [PubMed] [Google Scholar]
  16. Wadman S. K., Duran M., Beemer F. A., Cats B. P., Johnson J. L., Rajagopalan K. V., Saudubray J. M., Ogier H., Charpentier C., Berger R. Absence of hepatic molybdenum cofactor: an inborn error of metabolism leading to a combined deficiency of sulphite oxidase and xanthine dehydrogenase. J Inherit Metab Dis. 1983;6 (Suppl 1):78–83. doi: 10.1007/BF01811328. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES