Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1989 Nov;84(5):1460–1469. doi: 10.1172/JCI114321

Augmented bicarbonate reabsorption by both the proximal and distal nephron maintains chloride-deplete metabolic alkalosis in rats.

D E Wesson 1
PMCID: PMC304010  PMID: 2808701

Abstract

Whether augmented bicarbonate reabsorption by renal tubular epithelium contributes to the maintenance of chloride-deplete metabolic alkalosis is not clear. This study used free-flow micropuncture to investigate bicarbonate reabsorption by surface nephron segments in a rat model of diuretic-induced alkalosis compared to control. The proximal and distal nephron of the alkalotic animals had higher values for both delivered load to and absolute reabsorption from these segments. The proximal tubules of alkalotic and control animals had similar values for the slopes of the linear regression of delivered load vs. reabsorption and for the bicarbonate tubular fluid to plasma (TF/P) ratio at the late proximal tubule. By contrast, the corresponding analysis for the distal segment of alkalotic animals revealed a greater slope (0.98 vs. 0.81, P less than 0.003) and a smaller bicarbonate TF/P ratio at the late distal tubule (0.10 vs. 0.16, P less than 0.006). The data indicate that augmented bicarbonate reabsorption by both the proximal and distal nephron contributes to maintaining the alkalosis of this model. The data suggest primary stimulation of bicarbonate reabsorption in the distal nephron and load-dependent reabsorption in the proximal tubule.

Full text

PDF
1460

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Alpern R. J., Cogan M. G., Rector F. C., Jr Effects of extracellular fluid volume and plasma bicarbonate concentration on proximal acidification in the rat. J Clin Invest. 1983 Mar;71(3):736–746. doi: 10.1172/JCI110821. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Alpern R. J., Cogan M. G., Rector F. C., Jr Flow dependence of proximal tubular bicarbonate absorption. Am J Physiol. 1983 Oct;245(4):F478–F484. doi: 10.1152/ajprenal.1983.245.4.F478. [DOI] [PubMed] [Google Scholar]
  3. Bank N., Aynedjian H. S. A micropuncture study of renal bicarbonate and chloride reabsorption in hypokalaemic alkalosis. Clin Sci. 1965 Aug;29(1):159–170. [PubMed] [Google Scholar]
  4. Capasso G., Kinne R., Malnic G., Giebisch G. Renal bicarbonate reabsorption in the rat. I. Effects of hypokalemia and carbonic anhydrase. J Clin Invest. 1986 Dec;78(6):1558–1567. doi: 10.1172/JCI112748. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Cemerikić D., Wilcox C. S., Giebisch G. Intracellular potential and K+ activity in rat kidney proximal tubular cells in acidosis and K+ depletion. J Membr Biol. 1982;69(2):159–165. doi: 10.1007/BF01872275. [DOI] [PubMed] [Google Scholar]
  6. Chan Y. L., Biagi B., Giebisch G. Control mechanisms of bicarbonate transport across the rat proximal convoluted tubule. Am J Physiol. 1982 May;242(5):F532–F543. doi: 10.1152/ajprenal.1982.242.5.F532. [DOI] [PubMed] [Google Scholar]
  7. Cogan M. G., Liu F. Y. Metabolic alkalosis in the rat. Evidence that reduced glomerular filtration rather than enhanced tubular bicarbonate reabsorption is responsible for maintaining the alkalotic state. J Clin Invest. 1983 May;71(5):1141–1160. doi: 10.1172/JCI110864. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Cogan M. G., Maddox D. A., Lucci M. S., Rector F. C., Jr Control of proximal bicarbonate reabsorption in normal and acidotic rats. J Clin Invest. 1979 Nov;64(5):1168–1180. doi: 10.1172/JCI109570. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. De Mello Aires M., Malnic G. Micropuncture study of acidification during hypochloremic alkalosis in the rat. Pflugers Arch. 1972;331(1):13–24. doi: 10.1007/BF00587187. [DOI] [PubMed] [Google Scholar]
  10. De Mello Aires M., Malnic G. Renal handling of sodium and potassium during hypochloremic alkalosis in the rat. Pflugers Arch. 1972;331(3):215–225. doi: 10.1007/BF00589128. [DOI] [PubMed] [Google Scholar]
  11. Galla J. H., Bonduris D. N., Luke R. G. Correction of acute chloride-depletion alkalosis in the rat without volume expansion. Am J Physiol. 1983 Feb;244(2):F217–F221. doi: 10.1152/ajprenal.1983.244.2.F217. [DOI] [PubMed] [Google Scholar]
  12. Häberle D. A., Shiigai T. T., Maier G., Schiffl H., Davis J. M. Dependency of proximal tubular fluid transport on the load of glomerular filtrate. Kidney Int. 1981 Jul;20(1):18–28. doi: 10.1038/ki.1981.99. [DOI] [PubMed] [Google Scholar]
  13. Kaufman A. M., Kahn T. Complementary role of citrate and bicarbonate excretion in acid-base balance in the rat. Am J Physiol. 1988 Jul;255(1 Pt 2):F182–F187. doi: 10.1152/ajprenal.1988.255.1.F182. [DOI] [PubMed] [Google Scholar]
  14. Kurtzman N. A. Regulation of renal bicarbonate reabsorption by extracellular volume. J Clin Invest. 1970 Mar;49(3):586–595. doi: 10.1172/JCI106269. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Liu F. Y., Cogan M. G. Axial heterogeneity of bicarbonate, chloride, and water transport in the rat proximal convoluted tubule. Effects of change in luminal flow rate and of alkalemia. J Clin Invest. 1986 Dec;78(6):1547–1557. doi: 10.1172/JCI112747. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Liu F. Y., Cogan M. G. Kinetics of bicarbonate transport in the early proximal convoluted tubule. Am J Physiol. 1987 Nov;253(5 Pt 2):F912–F916. doi: 10.1152/ajprenal.1987.253.5.F912. [DOI] [PubMed] [Google Scholar]
  17. Maddox D. A., Gennari F. J. Load dependence of proximal tubular bicarbonate reabsorption in chronic metabolic alkalosis in the rat. J Clin Invest. 1986 Mar;77(3):709–716. doi: 10.1172/JCI112365. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Maddox D. A., Gennari F. J. Proximal tubular bicarbonate reabsorption and PCO2 in chronic metabolic alkalosis in the rat. J Clin Invest. 1983 Oct;72(4):1385–1395. doi: 10.1172/JCI111095. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Matsumura Y., Cohen B., Guggino W. B., Giebisch G. Regulation of the basolateral potassium conductance of the Necturus proximal tubule. J Membr Biol. 1984;79(2):153–161. doi: 10.1007/BF01872119. [DOI] [PubMed] [Google Scholar]
  20. Peterson O. W., Gushwa L. C., Blantz R. C. An analysis of glomerular-tubular balance in the rat proximal tubule. Pflugers Arch. 1986 Aug;407(2):221–227. doi: 10.1007/BF00580680. [DOI] [PubMed] [Google Scholar]
  21. Schnermann J., Wright F. S., Davis J. M., von Stackelberg W., Grill G. Regulation of superficial nephron filtration rate by tubulo-glomerular feedback. Pflugers Arch. 1970;318(2):147–175. doi: 10.1007/BF00586493. [DOI] [PubMed] [Google Scholar]
  22. Seldin D. W., Rector F. C., Jr Symposium on acid-base homeostasis. The generation and maintenance of metabolic alkalosis. Kidney Int. 1972 May;1(5):306–321. doi: 10.1038/ki.1972.43. [DOI] [PubMed] [Google Scholar]
  23. Vurek G. G., Warnock D. G., Corsey R. Measurement of picomole amounts of carbon dioxide by calorimetry. Anal Chem. 1975 Apr;47(4):765–767. doi: 10.1021/ac60354a024. [DOI] [PubMed] [Google Scholar]
  24. Wall B. M., Byrum G. V., Galla J. H., Luke R. G. Importance of chloride for the correction of chronic metabolic alkalosis in the rat. Am J Physiol. 1987 Nov;253(5 Pt 2):F1031–F1039. doi: 10.1152/ajprenal.1987.253.5.F1031. [DOI] [PubMed] [Google Scholar]
  25. Wesson D. E. Glomerular filtration effects of acute volume expansion: importance of chloride. Kidney Int. 1987 Aug;32(2):238–245. doi: 10.1038/ki.1987.198. [DOI] [PubMed] [Google Scholar]
  26. Wesson D. E. Hypocalcemia-associated modulation of renal response to acute volume expansion in rats. Am J Physiol. 1987 Oct;253(4 Pt 2):F726–F733. doi: 10.1152/ajprenal.1987.253.4.F726. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES