Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1989 Dec;84(6):1741–1748. doi: 10.1172/JCI114357

Chronic norepinephrine elicits desensitization by uncoupling the beta-receptor.

D E Vatner 1, S F Vatner 1, J Nejima 1, N Uemura 1, E E Susanni 1, T H Hintze 1, C J Homcy 1
PMCID: PMC304050  PMID: 2556443

Abstract

The goal of this study was to determine the mechanism of beta-adrenergic receptor desensitization after chronic elevation of circulating NE levels. Osmotic minipumps containing either NE or saline were implanted subcutaneously in dogs for 3-4 wk. Physiologic desensitization to isoproterenol was confirmed in conscious dogs, i.e., left ventricular dP/dt increased in response to isoproterenol (0.4 micrograms/kg per min) by 5,625 +/- 731 mmHg/s in control dogs with saline pumps, and significantly less, P less than 0.01, by 2,093 +/- 263 mmHg/s in dogs with NE pumps. Myocardial beta-adrenergic receptor density as determined with 125I-cyanopindolol binding was 49% higher (p less than 0.05) in the NE pump group. However, beta-adrenergic receptor agonist binding with isoproterenol demonstrated a significant shift into the low affinity state for the animals with NE pumps. Basal, GTP plus isoproterenol, 5'-guanylylimidodiphosphate, sodium fluoride, and forskolin-stimulated adenylate cyclase activity in the NE pump group were significantly depressed (P less than 0.05) by amounts ranging from 20 to 40%. The functional activity of the guanine nucleotide binding protein Gs was also reduced (P less than 0.05) in animals with NE pumps. Thus, the process of desensitization in response to chronic elevation of NE levels in intact, normal dogs does not involve a decrease in beta-adrenergic receptor density. Rather, it is characterized by reduced adenylate cyclase activation and uncoupling of the beta-adrenergic receptor in association with decreased activity of the GTP-coupling protein Gs.

Full text

PDF
1748

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Boege F., Ward M., Jürss R., Hekman M., Helmreich E. J. Role of glycosylation for beta 2-adrenoceptor function in A431 cells. J Biol Chem. 1988 Jun 25;263(18):9040–9049. [PubMed] [Google Scholar]
  2. Bouvier M., Hausdorff W. P., De Blasi A., O'Dowd B. F., Kobilka B. K., Caron M. G., Lefkowitz R. J. Removal of phosphorylation sites from the beta 2-adrenergic receptor delays onset of agonist-promoted desensitization. Nature. 1988 May 26;333(6171):370–373. doi: 10.1038/333370a0. [DOI] [PubMed] [Google Scholar]
  3. Bristow M. R., Ginsburg R., Minobe W., Cubicciotti R. S., Sageman W. S., Lurie K., Billingham M. E., Harrison D. C., Stinson E. B. Decreased catecholamine sensitivity and beta-adrenergic-receptor density in failing human hearts. N Engl J Med. 1982 Jul 22;307(4):205–211. doi: 10.1056/NEJM198207223070401. [DOI] [PubMed] [Google Scholar]
  4. CHIDSEY C. A., BRAUNWALD E., MORROW A. G. CATECHOLAMINE EXCRETION AND CARDIAC STORES OF NOREPINEPHRINE IN CONGESTIVE HEART FAILURE. Am J Med. 1965 Sep;39:442–451. doi: 10.1016/0002-9343(65)90211-1. [DOI] [PubMed] [Google Scholar]
  5. Clark R. B., Friedman J., Johnson J. A., Kunkel M. W. Beta-adrenergic receptor desensitization of wild-type but not cyc lymphoma cells unmasked by submillimolar Mg2+. FASEB J. 1987 Oct;1(4):289–297. doi: 10.1096/fasebj.1.4.2820824. [DOI] [PubMed] [Google Scholar]
  6. Downs R. W., Jr, Aurbach G. D. The effects of forskolin on adenylate cyclase in S49 wild type and cyc- cells. J Cyclic Nucleotide Res. 1982;8(4):235–242. [PubMed] [Google Scholar]
  7. ESSEX H. E. Further observations of certain responses of tolerant and control animals to massive doses of epinephrine. Am J Physiol. 1952 Oct;171(1):78–86. doi: 10.1152/ajplegacy.1952.171.1.78. [DOI] [PubMed] [Google Scholar]
  8. Green D. A., Clark R. B. Direct evidence for the role of the coupling proteins in forskolin activation of adenylate cyclase. J Cyclic Nucleotide Res. 1982;8(5):337–346. [PubMed] [Google Scholar]
  9. Hammond H. K., Ransnas L. A., Insel P. A. Noncoordinate regulation of cardiac Gs protein and beta-adrenergic receptors by a physiological stimulus, chronic dynamic exercise. J Clin Invest. 1988 Dec;82(6):2168–2171. doi: 10.1172/JCI113840. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Harden T. K. Agonist-induced desensitization of the beta-adrenergic receptor-linked adenylate cyclase. Pharmacol Rev. 1983 Mar;35(1):5–32. [PubMed] [Google Scholar]
  11. Heinsimer J. A., Davies A. O., Downs R. W., Levine M. A., Spiegel A. M., Drezner M. K., De Lean A., Wreggett K. A., Caron M. G., Lefkowitz R. J. Impaired formation of beta-adrenergic receptor-nucleotide regulatory protein complexes in pseudohypoparathyroidism. J Clin Invest. 1984 May;73(5):1335–1343. doi: 10.1172/JCI111336. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Hertel C., Perkins J. P. Receptor-specific mechanisms of desensitization of beta-adrenergic receptor function. Mol Cell Endocrinol. 1984 Oct;37(3):245–256. doi: 10.1016/0303-7207(84)90094-7. [DOI] [PubMed] [Google Scholar]
  13. Kassis S., Olasmaa M., Sullivan M., Fishman P. H. Desensitization of the beta-adrenergic receptor-coupled adenylate cyclase in cultured mammalian cells. Receptor sequestration versus receptor function. J Biol Chem. 1986 Sep 15;261(26):12233–12237. [PubMed] [Google Scholar]
  14. Kelleher D. J., Pessin J. E., Ruoho A. E., Johnson G. L. Phorbol ester induces desensitization of adenylate cyclase and phosphorylation of the beta-adrenergic receptor in turkey erythrocytes. Proc Natl Acad Sci U S A. 1984 Jul;81(14):4316–4320. doi: 10.1073/pnas.81.14.4316. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. King B. D., Sack D., Kichuk M. R., Hintze T. H. Absence of hypertension despite chronic marked elevations in plasma norepinephrine in conscious dogs. Hypertension. 1987 Jun;9(6):582–590. doi: 10.1161/01.hyp.9.6.582. [DOI] [PubMed] [Google Scholar]
  16. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  17. Laks M. M., Morady F., Swan H. J. Myocardial hypertrophy produced by chronic infusion of subhypertensive doses of norepinephrine in the dog. Chest. 1973 Jul;64(1):75–78. doi: 10.1378/chest.64.1.75. [DOI] [PubMed] [Google Scholar]
  18. Lefkowitz R. J., Stadel J. M., Caron M. G. Adenylate cyclase-coupled beta-adrenergic receptors: structure and mechanisms of activation and desensitization. Annu Rev Biochem. 1983;52:159–186. doi: 10.1146/annurev.bi.52.070183.001111. [DOI] [PubMed] [Google Scholar]
  19. Longabaugh J. P., Vatner D. E., Graham R. M., Homcy C. J. NADP improves the efficiency of cholera toxin catalyzed ADP-ribosylation in liver and heart membranes. Biochem Biophys Res Commun. 1986 May 29;137(1):328–333. doi: 10.1016/0006-291x(86)91214-3. [DOI] [PubMed] [Google Scholar]
  20. Longabaugh J. P., Vatner D. E., Vatner S. F., Homcy C. J. Decreased stimulatory guanosine triphosphate binding protein in dogs with pressure-overload left ventricular failure. J Clin Invest. 1988 Feb;81(2):420–424. doi: 10.1172/JCI113335. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Munson P. J., Rodbard D. Ligand: a versatile computerized approach for characterization of ligand-binding systems. Anal Biochem. 1980 Sep 1;107(1):220–239. doi: 10.1016/0003-2697(80)90515-1. [DOI] [PubMed] [Google Scholar]
  22. Peuler J. D., Johnson G. A. Simultaneous single isotope radioenzymatic assay of plasma norepinephrine, epinephrine and dopamine. Life Sci. 1977 Sep 1;21(5):625–636. doi: 10.1016/0024-3205(77)90070-4. [DOI] [PubMed] [Google Scholar]
  23. Ransnäs L. A., Insel P. A. Quantitation of the guanine nucleotide binding regulatory protein Gs in S49 cell membranes using antipeptide antibodies to alpha s. J Biol Chem. 1988 Jul 5;263(19):9482–9485. [PubMed] [Google Scholar]
  24. Ross E. M., Maguire M. E., Sturgill T. W., Biltonen R. L., Gilman A. G. Relationship between the beta-adrenergic receptor and adenylate cyclase. J Biol Chem. 1977 Aug 25;252(16):5761–5775. [PubMed] [Google Scholar]
  25. Salomon Y., Londos C., Rodbell M. A highly sensitive adenylate cyclase assay. Anal Biochem. 1974 Apr;58(2):541–548. doi: 10.1016/0003-2697(74)90222-x. [DOI] [PubMed] [Google Scholar]
  26. Seamon K. B., Padgett W., Daly J. W. Forskolin: unique diterpene activator of adenylate cyclase in membranes and in intact cells. Proc Natl Acad Sci U S A. 1981 Jun;78(6):3363–3367. doi: 10.1073/pnas.78.6.3363. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Seamon K., Daly J. W. Activation of adenylate cyclase by the diterpene forskolin does not require the guanine nucleotide regulatory protein. J Biol Chem. 1981 Oct 10;256(19):9799–9801. [PubMed] [Google Scholar]
  28. Sibley D. R., Daniel K., Strader C. D., Lefkowitz R. J. Phosphorylation of the beta-adrenergic receptor in intact cells: relationship to heterologous and homologous mechanisms of adenylate cyclase desensitization. Arch Biochem Biophys. 1987 Oct;258(1):24–32. doi: 10.1016/0003-9861(87)90318-3. [DOI] [PubMed] [Google Scholar]
  29. Sibley D. R., Nambi P., Peters J. R., Lefkowitz R. J. Phorbol diesters promote beta-adrenergic receptor phosphorylation and adenylate cyclase desensitization in duck erythrocytes. Biochem Biophys Res Commun. 1984 Jun 29;121(3):973–979. doi: 10.1016/0006-291x(84)90772-1. [DOI] [PubMed] [Google Scholar]
  30. Sibley D. R., Strasser R. H., Caron M. G., Lefkowitz R. J. Homologous desensitization of adenylate cyclase is associated with phosphorylation of the beta-adrenergic receptor. J Biol Chem. 1985 Apr 10;260(7):3883–3886. [PubMed] [Google Scholar]
  31. Simpson P. Stimulation of hypertrophy of cultured neonatal rat heart cells through an alpha 1-adrenergic receptor and induction of beating through an alpha 1- and beta 1-adrenergic receptor interaction. Evidence for independent regulation of growth and beating. Circ Res. 1985 Jun;56(6):884–894. doi: 10.1161/01.res.56.6.884. [DOI] [PubMed] [Google Scholar]
  32. Stengel D., Guenet L., Desmier M., Insel P., Hanoune J. Forskolin requires more than the catalytic unit to activate adenylate cyclase. Mol Cell Endocrinol. 1982 Nov-Dec;28(3):681–690. doi: 10.1016/0303-7207(82)90155-1. [DOI] [PubMed] [Google Scholar]
  33. Sternweis P. C., Gilman A. G. Reconstitution of catecholamine-sensitive adenylate cyclase. Reconstitution of the uncoupled variant of the S40 lymphoma cell. J Biol Chem. 1979 May 10;254(9):3333–3340. [PubMed] [Google Scholar]
  34. Sternweis P. C., Northup J. K., Smigel M. D., Gilman A. G. The regulatory component of adenylate cyclase. Purification and properties. J Biol Chem. 1981 Nov 25;256(22):11517–11526. [PubMed] [Google Scholar]
  35. Strasser R. H., Lefkowitz R. J. Homologous desensitization of beta-adrenergic receptor coupled adenylate cyclase. Resensitization by polyethylene glycol treatment. J Biol Chem. 1985 Apr 25;260(8):4561–4564. [PubMed] [Google Scholar]
  36. Tse J., Powell J. R., Baste C. A., Priest R. E., Kuo J. F. Isoproterenol-induced cardiac hypertrophy: modifications in characteristics of beta-adrenergic receptor, adenylate cyclase, and ventricular contraction. Endocrinology. 1979 Jul;105(1):246–255. doi: 10.1210/endo-105-1-246. [DOI] [PubMed] [Google Scholar]
  37. VIGRAN I. M., ESSEX H. E. Studies on physiologic effects of large doses of epinephrine. Am J Physiol. 1950 Jul 1;162(1):230–242. doi: 10.1152/ajplegacy.1950.162.1.230. [DOI] [PubMed] [Google Scholar]
  38. Vatner D. E., Lavallee M., Amano J., Finizola A., Homcy C. J., Vatner S. F. Mechanisms of supersensitivity to sympathomimetic amines in the chronically denervated heart of the conscious dog. Circ Res. 1985 Jul;57(1):55–64. doi: 10.1161/01.res.57.1.55. [DOI] [PubMed] [Google Scholar]
  39. Vatner D. E., Vatner S. F., Fujii A. M., Homcy C. J. Loss of high affinity cardiac beta adrenergic receptors in dogs with heart failure. J Clin Invest. 1985 Dec;76(6):2259–2264. doi: 10.1172/JCI112235. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Vatner S. F., Rutherford J. D., Ochs H. R. Baroreflex and vagal mechanisms modulating left ventricular contractile responses to sympathomimetic amines in conscious dogs. Circ Res. 1979 Feb;44(2):195–207. doi: 10.1161/01.res.44.2.195. [DOI] [PubMed] [Google Scholar]
  41. Wong S. K., Martin B. R. The role of a guanine nucleotide-binding protein in the activation of rat liver plasma-membrane adenylate cyclase by forskolin. Biochem J. 1983 Dec 15;216(3):753–759. doi: 10.1042/bj2160753. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Yoshimasa T., Sibley D. R., Bouvier M., Lefkowitz R. J., Caron M. G. Cross-talk between cellular signalling pathways suggested by phorbol-ester-induced adenylate cyclase phosphorylation. Nature. 1987 May 7;327(6117):67–70. doi: 10.1038/327067a0. [DOI] [PubMed] [Google Scholar]
  43. Zahler W. L. Evidence for multiple interconvertible forms of adenylate cyclase detected by forskolin activation. J Cyclic Nucleotide Protein Phosphor Res. 1983;9(3):221–230. [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES