Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1987 Jan;84(1):246–250. doi: 10.1073/pnas.84.1.246

Selective killing of T lymphocytes by phototoxic liposomes.

S Yemul, C Berger, A Estabrook, S Suarez, R Edelson, H Bayley
PMCID: PMC304180  PMID: 3491992

Abstract

Two-fold specificity in drug delivery obtained through the localized activation of drugs by physical means and the attachment of drugs to proteins that bind to target cells might be used for highly selective cancer chemotherapy or for immunosuppression. Toward this end, a monoclonal antibody against an antigen on the surface of T lymphocytes was covalently attached to liposomes containing a phototoxic drug, pyrene, bound to the lipid bilayer. When unfractionated peripheral blood lymphocytes, or B- and T-cell lines, were irradiated after treatment with these liposomes, T cells were killed while B cells were spared, demonstrating the validity of the approach in a simple in vitro assay.

Full text

PDF
248

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Carlsson J., Drevin H., Axén R. Protein thiolation and reversible protein-protein conjugation. N-Succinimidyl 3-(2-pyridyldithio)propionate, a new heterobifunctional reagent. Biochem J. 1978 Sep 1;173(3):723–737. doi: 10.1042/bj1730723. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Dillman R. O., Shawler D. L., Sobol R. E., Collins H. A., Beauregard J. C., Wormsley S. B., Royston I. Murine monoclonal antibody therapy in two patients with chronic lymphocytic leukemia. Blood. 1982 May;59(5):1036–1045. [PubMed] [Google Scholar]
  3. Edwards D. C. Targeting potential of antibody conjugates. Pharmacol Ther. 1983;23(1):147–177. doi: 10.1016/0163-7258(83)90029-3. [DOI] [PubMed] [Google Scholar]
  4. Estabrook A., Mittler R., LoGerfo P., Hardy M., Edelson R. L., Berger C. L. Antigenic modulation of pan-T-cell and T-cell subset-specific markers. Diagn Immunol. 1983;1(3):199–204. [PubMed] [Google Scholar]
  5. Ghose T., Blair A. H., Uadia P., Kulkarni P. N., Goundalkar A., Mezei M., Ferrone S. Antibodies as carriers of cancer chemotherapeutic agents. Ann N Y Acad Sci. 1985;446:213–227. doi: 10.1111/j.1749-6632.1985.tb18402.x. [DOI] [PubMed] [Google Scholar]
  6. Gregoriadis G. Use of monoclonal antibodies and liposomes to improve drug delivery. Present status and future implications. Drugs. 1982 Oct;24(4):261–266. doi: 10.2165/00003495-198224040-00001. [DOI] [PubMed] [Google Scholar]
  7. Hashimoto Y., Sugawara M., Masuko T., Hojo H. Antitumor effect of actinomycin D entrapped in liposomes bearing subunits of tumor-specific monoclonal immunoglobulin M antibody. Cancer Res. 1983 Nov;43(11):5328–5334. [PubMed] [Google Scholar]
  8. Heath T. D., Montgomery J. A., Piper J. R., Papahadjopoulos D. Antibody-targeted liposomes: increase in specific toxicity of methotrexate-gamma-aspartate. Proc Natl Acad Sci U S A. 1983 Mar;80(5):1377–1381. doi: 10.1073/pnas.80.5.1377. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Letokhov V. S. Laser biology and medicine. Nature. 1985 Jul 25;316(6026):325–330. doi: 10.1038/316325a0. [DOI] [PubMed] [Google Scholar]
  10. Levy R., Hurwitz E., Maron R., Arnon R., Sela M. The specific cytotoxic effects of daunomycin conjugated to antitumor antibodies. Cancer Res. 1975 May;35(5):1182–1186. [PubMed] [Google Scholar]
  11. Machy P., Barbet J., Leserman L. D. Differential endocytosis of T and B lymphocyte surface molecules evaluated with antibody-bearing fluorescent liposomes containing methotrexate. Proc Natl Acad Sci U S A. 1982 Jul;79(13):4148–4152. doi: 10.1073/pnas.79.13.4148. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Martin F. J., Papahadjopoulos D. Irreversible coupling of immunoglobulin fragments to preformed vesicles. An improved method for liposome targeting. J Biol Chem. 1982 Jan 10;257(1):286–288. [PubMed] [Google Scholar]
  13. Mew D., Lum V., Wat C. K., Towers G. H., Sun C. H., Walter R. J., Wright W., Berns M. W., Levy J. G. Ability of specific monoclonal antibodies and conventional antisera conjugated to hematoporphyrin to label and kill selected cell lines subsequent to light activation. Cancer Res. 1985 Sep;45(9):4380–4386. [PubMed] [Google Scholar]
  14. Mew D., Wat C. K., Towers G. H., Levy J. G. Photoimmunotherapy: treatment of animal tumors with tumor-specific monoclonal antibody-hematoporphyrin conjugates. J Immunol. 1983 Mar;130(3):1473–1477. [PubMed] [Google Scholar]
  15. Miller D. K., Griffiths E., Lenard J., Firestone R. A. Cell killing by lysosomotropic detergents. J Cell Biol. 1983 Dec;97(6):1841–1851. doi: 10.1083/jcb.97.6.1841. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Mosley S. T., Goldstein J. L., Brown M. S., Falck J. R., Anderson R. G. Targeted killing of cultured cells by receptor-dependent photosensitization. Proc Natl Acad Sci U S A. 1981 Sep;78(9):5717–5721. doi: 10.1073/pnas.78.9.5717. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Mosley S. T., Yang Y. L., Falck J. R., Anderson R. G. Receptor-mediated delivery of photoprotective agents by low-density lipoprotein. Exp Cell Res. 1984 Dec;155(2):389–396. doi: 10.1016/0014-4827(84)90199-x. [DOI] [PubMed] [Google Scholar]
  18. Poynton C. H., Dicke K. A., Culbert S., Frankel L. S., Jagannath S., Reading C. L. Immunomagnetic removal of CALLA positive cells from human bone marrow. Lancet. 1983 Mar 5;1(8323):524–524. doi: 10.1016/s0140-6736(83)92206-7. [DOI] [PubMed] [Google Scholar]
  19. Poznansky M. J., Juliano R. L. Biological approaches to the controlled delivery of drugs: a critical review. Pharmacol Rev. 1984 Dec;36(4):277–336. [PubMed] [Google Scholar]
  20. Reinherz E. L., Kung P. C., Goldstein G., Schlossman S. F. A monoclonal antibody with selective reactivity with functionally mature human thymocytes and all peripheral human T cells. J Immunol. 1979 Sep;123(3):1312–1317. [PubMed] [Google Scholar]
  21. Ritz J., Pesando J. M., Notis-McConarty J., Clavell L. A., Sallan S. E., Schlossman S. F. Use of monoclonal antibodies as diagnostic and therapeutic reagents in acute lymphoblastic leukemia. Cancer Res. 1981 Nov;41(11 Pt 2):4771–4775. [PubMed] [Google Scholar]
  22. Roseman M. A., Thompson T. E. Mechanism of the spontaneous transfer of phospholipids between bilayers. Biochemistry. 1980 Feb 5;19(3):439–444. doi: 10.1021/bi00544a006. [DOI] [PubMed] [Google Scholar]
  23. Royston I., Majda J. A., Baird S. M., Meserve B. L., Griffiths J. C. Human T cell antigens defined by monoclonal antibodies: the 65,000-dalton antigen of T cells (T65) is also found on chronic lymphocytic leukemia cells bearing surface immunoglobulin. J Immunol. 1980 Aug;125(2):725–731. [PubMed] [Google Scholar]
  24. Segal A. W., Wills E. J., Richmond J. E., Slavin G., Black C. D., Gregoriadis G. Morphological observations on the cellular and subcellular destination of intravenously administered liposomes. Br J Exp Pathol. 1974 Aug;55(4):320–327. [PMC free article] [PubMed] [Google Scholar]
  25. Shen D. F., Huang A., Huang L. An improved method for covalent attachment of antibody to liposomes. Biochim Biophys Acta. 1982 Jul 14;689(1):31–37. doi: 10.1016/0005-2736(82)90185-7. [DOI] [PubMed] [Google Scholar]
  26. Straubinger R. M., Hong K., Friend D. S., Papahadjopoulos D. Endocytosis of liposomes and intracellular fate of encapsulated molecules: encounter with a low pH compartment after internalization in coated vesicles. Cell. 1983 Apr;32(4):1069–1079. doi: 10.1016/0092-8674(83)90291-x. [DOI] [PubMed] [Google Scholar]
  27. Straubinger R. M., Papahadjopoulos D. Liposomes as carriers for intracellular delivery of nucleic acids. Methods Enzymol. 1983;101:512–527. doi: 10.1016/0076-6879(83)01035-6. [DOI] [PubMed] [Google Scholar]
  28. Struck D. K., Pagano R. E. Insertion of fluorescent phospholipids into the plasma membrane of a mammalian cell. J Biol Chem. 1980 Jun 10;255(11):5404–5410. [PubMed] [Google Scholar]
  29. Sullivan S. M., Huang L. Preparation and characterization of heat-sensitive immunoliposomes. Biochim Biophys Acta. 1985 Jan 10;812(1):116–126. doi: 10.1016/0005-2736(85)90528-0. [DOI] [PubMed] [Google Scholar]
  30. Treleaven J. G., Gibson F. M., Ugelstad J., Rembaum A., Philip T., Caine G. D., Kemshead J. T. Removal of neuroblastoma cells from bone marrow with monoclonal antibodies conjugated to magnetic microspheres. Lancet. 1984 Jan 14;1(8368):70–73. doi: 10.1016/s0140-6736(84)90004-7. [DOI] [PubMed] [Google Scholar]
  31. Vitetta E. S., Krolick K. A., Miyama-Inaba M., Cushley W., Uhr J. W. Immunotoxins: a new approach to cancer therapy. Science. 1983 Feb 11;219(4585):644–650. doi: 10.1126/science.6218613. [DOI] [PubMed] [Google Scholar]
  32. Vitetta E. S., Uhr J. W. Immunotoxins: redirecting nature's poisons. Cell. 1985 Jul;41(3):653–654. doi: 10.1016/s0092-8674(85)80042-8. [DOI] [PubMed] [Google Scholar]
  33. Weinstein J. N., Leserman L. D. Liposomes as drug carriers in cancer chemotherapy. Pharmacol Ther. 1984;24(2):207–233. doi: 10.1016/0163-7258(84)90035-4. [DOI] [PubMed] [Google Scholar]
  34. West W. H., Payne S. M., Weese J. L., Herberman R. B. Human T lymphocyte subpopulations: correlation between E-rosette-forming affinity and expression of the Fc receptor. J Immunol. 1977 Aug;119(2):548–554. [PubMed] [Google Scholar]
  35. Widder K. J., Morris R. M., Poore G., Howard D. P., Jr, Senyei A. E. Tumor remission in Yoshida sarcoma-bearing rts by selective targeting of magnetic albumin microspheres containing doxorubicin. Proc Natl Acad Sci U S A. 1981 Jan;78(1):579–581. doi: 10.1073/pnas.78.1.579. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Wolff B., Gregoriadis G. The use of monoclonal anti-Thy1 IgG1 for the targeting of liposomes to AKR-A cells in vitro and in vivo. Biochim Biophys Acta. 1984 Nov 28;802(2):259–273. doi: 10.1016/0304-4165(84)90170-3. [DOI] [PubMed] [Google Scholar]
  37. Yatvin M. B., Weinstein J. N., Dennis W. H., Blumenthal R. Design of liposomes for enhanced local release of drugs by hyperthermia. Science. 1978 Dec 22;202(4374):1290–1293. doi: 10.1126/science.364652. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES