Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1987 Mar;84(5):1152–1156. doi: 10.1073/pnas.84.5.1152

Site-directed mutagenesis of the COOH-terminal region of colicin A: effect on secretion and voltage-dependent channel activity.

D Baty, M Knibiehler, H Verheij, F Pattus, D Shire, A Bernadac, C Lazdunski
PMCID: PMC304384  PMID: 2434951

Abstract

A large number of mutants introducing point mutations and deletions into the COOH-terminal domain of colicin A have been constructed by using site-directed mutagenesis. The COOH-terminal domain carries the channel activity. The effects of the alterations in the polypeptide chain on the secretion of colicin A by colicinogenic cells have been investigated. All deletions and some mutations were found to lead to protein aggregation in the cytoplasm, thereby preventing release into the medium. The mutated colicin A proteins have been purified, and their activity in vivo (on sensitive cells) and in vitro (in planar lipid bilayers) has been assayed. Deletions in the region containing putative helices 4, 5, and 6 (predicted to be involved in pore formation) and the transitions (Ala----Asp-492, Phe----Pro-493) in helix 4 abolished the activity. No correlation was observed between mutations leading to protein aggregation and those leading to loss of channel activity. Some mutations were found to alter characteristic properties of the single channels, such as stability, current-relaxation kinetics, voltage dependence, and pore conductance. Site-directed mutagenesis provides a powerful tool for studying structure-function relationships of voltage-sensitive ionic channels.

Full text

PDF
1153

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Carter P. J., Winter G., Wilkinson A. J., Fersht A. R. The use of double mutants to detect structural changes in the active site of the tyrosyl-tRNA synthetase (Bacillus stearothermophilus). Cell. 1984 Oct;38(3):835–840. doi: 10.1016/0092-8674(84)90278-2. [DOI] [PubMed] [Google Scholar]
  2. Carter P., Bedouelle H., Winter G. Improved oligonucleotide site-directed mutagenesis using M13 vectors. Nucleic Acids Res. 1985 Jun 25;13(12):4431–4443. doi: 10.1093/nar/13.12.4431. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Cavard D., Bernadac A., Lazdunski C. Exclusive localization of colicin A in cell cytoplasm of producing bacteria. Eur J Biochem. 1981 Sep;119(1):125–131. doi: 10.1111/j.1432-1033.1981.tb05585.x. [DOI] [PubMed] [Google Scholar]
  4. Cavard D., Bernadac A., Pages J. M., Lazdunski C. Colicins are not transiently accumulated in the periplasmic space before release from colicinogenic cells. Biol Cell. 1984;51(1):79–86. doi: 10.1111/j.1768-322x.1984.tb00285.x. [DOI] [PubMed] [Google Scholar]
  5. Cavard D., Crozel V., Gorvel J. P., Pattus F., Baty D., Lazdunski C. A molecular, genetic and immunological approach to the functioning of colicin A, a pore-forming protein. J Mol Biol. 1986 Feb 5;187(3):449–459. doi: 10.1016/0022-2836(86)90445-6. [DOI] [PubMed] [Google Scholar]
  6. Cavard D., Lazdunski C. J. Purification and molecular properties of a new colicin. Eur J Biochem. 1979 Jun 1;96(3):519–524. doi: 10.1111/j.1432-1033.1979.tb13065.x. [DOI] [PubMed] [Google Scholar]
  7. Cavard D., Lloubès R., Morlon J., Chartier M., Lazdunski C. Lysis protein encoded by plasmid ColA-CA31. Gene sequence and export. Mol Gen Genet. 1985;199(1):95–100. doi: 10.1007/BF00327516. [DOI] [PubMed] [Google Scholar]
  8. Crozel V., Lazdunski C., Lloubes R., Cavard D. A colicin A fragment containing the receptor binding domain can be directed to the periplasmic space in E. coli through gene fusion. FEBS Lett. 1984 Jul 9;172(2):183–188. doi: 10.1016/0014-5793(84)81122-9. [DOI] [PubMed] [Google Scholar]
  9. Ebina Y., Kishi F., Miki T., Kagamiyama H., Nakazawa T., Nakazawa A. The nucleotide sequence surrounding the promoter region of colicin E1 gene. Gene. 1981 Nov;15(2-3):119–126. doi: 10.1016/0378-1119(81)90121-9. [DOI] [PubMed] [Google Scholar]
  10. Garavito R. M., Rosenbusch J. P. Isolation and crystallization of bacterial porin. Methods Enzymol. 1986;125:309–328. doi: 10.1016/s0076-6879(86)25027-2. [DOI] [PubMed] [Google Scholar]
  11. Hakkaart M. J., Veltkamp E., Nijkamp H. J. Protein H encoded by plasmid Clo DF13 involved in lysis of the bacterial host. II. Functions and regulation of synthesis of the gene H product. Mol Gen Genet. 1981;183(2):326–332. doi: 10.1007/BF00270636. [DOI] [PubMed] [Google Scholar]
  12. Jakes K. S., Model P. Mechanism of export of colicin E1 and colicin E3. J Bacteriol. 1979 Jun;138(3):770–778. doi: 10.1128/jb.138.3.770-778.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Jakes K. S., Zinder N. D. Plasmid ColE3 specifies a lysis protein. J Bacteriol. 1984 Feb;157(2):582–590. doi: 10.1128/jb.157.2.582-590.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Kramer B., Kramer W., Fritz H. J. Different base/base mismatches are corrected with different efficiencies by the methyl-directed DNA mismatch-repair system of E. coli. Cell. 1984 Oct;38(3):879–887. doi: 10.1016/0092-8674(84)90283-6. [DOI] [PubMed] [Google Scholar]
  15. Lloubes R., Baty D., Lazdunski C. The promoters of the genes for colicin production, release and immunity in the ColA plasmid: effects of convergent transcription and Lex A protein. Nucleic Acids Res. 1986 Mar 25;14(6):2621–2636. doi: 10.1093/nar/14.6.2621. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Martinez M. C., Lazdunski C., Pattus F. Isolation, molecular and functional properties of the C-terminal domain of colicin A. EMBO J. 1983;2(9):1501–1507. doi: 10.1002/j.1460-2075.1983.tb01614.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Morlon J., Lloubes R., Chartier M., Bonicel J., Lazdunski C. Nucleotide sequence of promoter, operator and amino-terminal region of caa, the structural gene of colicin A. EMBO J. 1983;2(5):787–789. doi: 10.1002/j.1460-2075.1983.tb01501.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Morlon J., Lloubès R., Varenne S., Chartier M., Lazdunski C. Complete nucleotide sequence of the structural gene for colicin A, a gene translated at non-uniform rate. J Mol Biol. 1983 Oct 25;170(2):271–285. doi: 10.1016/s0022-2836(83)80148-x. [DOI] [PubMed] [Google Scholar]
  19. Norris K., Norris F., Christiansen L., Fiil N. Efficient site-directed mutagenesis by simultaneous use of two primers. Nucleic Acids Res. 1983 Aug 11;11(15):5103–5112. doi: 10.1093/nar/11.15.5103. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Pattus F., Cavard D., Crozel V., Baty D., Adrian M., Lazdunski C. pH-dependent membrane fusion is promoted by various colicins. EMBO J. 1985 Oct;4(10):2469–2474. doi: 10.1002/j.1460-2075.1985.tb03958.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Pattus F., Heitz F., Martinez C., Provencher S. W., Lazdunski C. Secondary structure of the pore-forming colicin A and its C-terminal fragment. Experimental fact and structure prediction. Eur J Biochem. 1985 Nov 4;152(3):681–689. doi: 10.1111/j.1432-1033.1985.tb09248.x. [DOI] [PubMed] [Google Scholar]
  22. Pugsley A. P. Genetic analysis of ColN plasmid determinants for colicin production, release, and immunity. J Bacteriol. 1984 May;158(2):523–529. doi: 10.1128/jb.158.2.523-529.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Pugsley A. P., Schwartz M. Expression of a gene in a 400-base-pair fragment of colicin plasmid ColE2-P9 is sufficient to cause host cell lysis. J Bacteriol. 1983 Oct;156(1):109–114. doi: 10.1128/jb.156.1.109-114.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Schein S. J., Kagan B. L., Finkelstein A. Colicin K acts by forming voltage-dependent channels in phospholipid bilayer membranes. Nature. 1978 Nov 9;276(5684):159–163. doi: 10.1038/276159a0. [DOI] [PubMed] [Google Scholar]
  25. Tucker A. D., Pattus F., Tsernoglou D. Crystallization of the C-terminal domain of colicin A carrying the voltage-dependent pore activity of the protein. J Mol Biol. 1986 Jul 5;190(1):133–134. doi: 10.1016/0022-2836(86)90084-7. [DOI] [PubMed] [Google Scholar]
  26. Yamada M., Nakazawa A. Effect of base substitutions in the colicin E1 gene on colicin E1 export and bacteriocin activity. Mol Gen Genet. 1986 Jan;202(1):24–29. doi: 10.1007/BF00330511. [DOI] [PubMed] [Google Scholar]
  27. Zoller M. J., Smith M. Oligonucleotide-directed mutagenesis of DNA fragments cloned into M13 vectors. Methods Enzymol. 1983;100:468–500. doi: 10.1016/0076-6879(83)00074-9. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES