Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1987 Apr;84(8):2238–2241. doi: 10.1073/pnas.84.8.2238

Human placental ribonuclease inhibitor abolishes both angiogenic and ribonucleolytic activities of angiogenin.

R Shapiro, B L Vallee
PMCID: PMC304624  PMID: 3470787

Abstract

Human placental ribonuclease inhibitor (PRI) abolishes both the ribonucleolytic activity of angiogenin toward 28S and 18S rRNA and its angiogenic activity on the chicken embryo chorioallantoic membrane. Treatment of the angiogenin-PRI complex with p-hydroxymercuribenzoate releases enzymatically active angiogenin. Assays measuring competition between angiogenin and bovine pancreatic ribonuclease A for PRI reveal that binding of the inhibitor to angiogenin is extremely tight, with a Ki value well below 0.1 nM. The stability of the angiogenin-PRI complex was assessed by cation-exchange HPLC quantitation of free angiogenin. No significant dissociation was detected after 17 hr at 25 degrees C in the presence of a large excess of bovine ribonuclease, which serves as a scavenger for free inhibitor. The results of these experiments, based on the predictive capacity of the angiogenin/RNase homology, suggest that PRI and related inhibitors may participate in the in vivo regulation of angiogenin and that this might have pharmacologic and/or therapeutic implications.

Full text

PDF
2239

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Blackburn P., Gavilanes J. G. Identification of lysine residues in the binding domain of ribonuclease A for the RNase inhibitor from human placenta. J Biol Chem. 1982 Jan 10;257(1):316–321. [PubMed] [Google Scholar]
  2. Blackburn P., Gavilanes J. G. The role of lysine-41 of ribonuclease A in the interaction with RNase inhibitor from human placenta. J Biol Chem. 1980 Nov 25;255(22):10959–10965. [PubMed] [Google Scholar]
  3. Blackburn P., Jailkhani B. L. Ribonuclease inhibitor from human placenta: interaction with derivatives of ribonuclease A. J Biol Chem. 1979 Dec 25;254(24):12488–12493. [PubMed] [Google Scholar]
  4. Blackburn P. Ribonuclease inhibitor from human placenta: rapid purification and assay. J Biol Chem. 1979 Dec 25;254(24):12484–12487. [PubMed] [Google Scholar]
  5. Blackburn P., Wilson G., Moore S. Ribonuclease inhibitor from human placenta. Purification and properties. J Biol Chem. 1977 Aug 25;252(16):5904–5910. [PubMed] [Google Scholar]
  6. Burton L. E., Blackburn P., Moore S. Ribonuclease inhibitor from bovine brain. Int J Pept Protein Res. 1980 Nov;16(5):359–364. doi: 10.1111/j.1399-3011.1980.tb02959.x. [DOI] [PubMed] [Google Scholar]
  7. Fett J. W., Strydom D. J., Lobb R. R., Alderman E. M., Bethune J. L., Riordan J. F., Vallee B. L. Isolation and characterization of angiogenin, an angiogenic protein from human carcinoma cells. Biochemistry. 1985 Sep 24;24(20):5480–5486. doi: 10.1021/bi00341a030. [DOI] [PubMed] [Google Scholar]
  8. Knighton D., Ausprunk D., Tapper D., Folkman J. Avascular and vascular phases of tumour growth in the chick embryo. Br J Cancer. 1977 Mar;35(3):347–356. doi: 10.1038/bjc.1977.49. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Kraft N., Shortman K. A suggested control function for the animal tissue ribonuclease-ribonuclease inhibitor system, based on studies of isolated cells and phytohaemagglutinin-transformed lymphocytes. Biochim Biophys Acta. 1970 Sep 17;217(1):164–175. doi: 10.1016/0005-2787(70)90133-4. [DOI] [PubMed] [Google Scholar]
  10. Kurachi K., Davie E. W., Strydom D. J., Riordan J. F., Vallee B. L. Sequence of the cDNA and gene for angiogenin, a human angiogenesis factor. Biochemistry. 1985 Sep 24;24(20):5494–5499. doi: 10.1021/bi00341a032. [DOI] [PubMed] [Google Scholar]
  11. Palmer K. A., Scheraga H. A., Riordan J. F., Vallee B. L. A preliminary three-dimensional structure of angiogenin. Proc Natl Acad Sci U S A. 1986 Apr;83(7):1965–1969. doi: 10.1073/pnas.83.7.1965. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Scheele G., Blackburn P. Role of mammalian RNase inhibitor in cell-free protein synthesis. Proc Natl Acad Sci U S A. 1979 Oct;76(10):4898–4902. doi: 10.1073/pnas.76.10.4898. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Shapiro R., Riordan J. F., Vallee B. L. Characteristic ribonucleolytic activity of human angiogenin. Biochemistry. 1986 Jun 17;25(12):3527–3532. doi: 10.1021/bi00360a008. [DOI] [PubMed] [Google Scholar]
  14. Strydom D. J., Fett J. W., Lobb R. R., Alderman E. M., Bethune J. L., Riordan J. F., Vallee B. L. Amino acid sequence of human tumor derived angiogenin. Biochemistry. 1985 Sep 24;24(20):5486–5494. doi: 10.1021/bi00341a031. [DOI] [PubMed] [Google Scholar]
  15. Turner P. M., Lerea K. M., Kull F. J. The ribonuclease inhibitors from porcine thyroid and liver are slow, tight-binding inhibitors of bovine pancreatic ribonuclease A. Biochem Biophys Res Commun. 1983 Aug 12;114(3):1154–1160. doi: 10.1016/0006-291x(83)90683-6. [DOI] [PubMed] [Google Scholar]
  16. WITZEL H., BARNARD E. A. Mechanism and binding sites in the ribonuclease reaction. II. Kinetic studies on the first step of the reaction. Biochem Biophys Res Commun. 1962 May 4;7:295–299. doi: 10.1016/0006-291x(62)90194-8. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES