Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1987 Apr;84(8):2327–2330. doi: 10.1073/pnas.84.8.2327

Lentropin, a protein that controls lens fiber formation, is related functionally and immunologically to the insulin-like growth factors.

D C Beebe, M H Silver, K S Belcher, J J Van Wyk, M E Svoboda, P S Zelenka
PMCID: PMC304643  PMID: 3470795

Abstract

Lentropin, a factor present in the vitreous humor of the eye, stimulates lens fiber differentiation from chicken embryo lens epithelial cells in vitro. Lentropin has been partially purified but has not been isolated in sufficient quantity or purity for direct comparison with other growth and differentiation factors. Previous studies have shown that insulin and fetal bovine serum share with lentropin the ability to stimulate lens fiber formation from cultured epithelial cells. In the present study, a number of hormones and growth factors were assayed for lentropin activity. Of those tested, the only substances that had this activity were the insulin-like growth factors (IGFs) somatomedin C (Sm-C/IGF-I) and multiplication-stimulating activity (MSA/IGF-II). Sm-C/IGF-I was approximately 30 times more potent than insulin or MSA/IGF-II in promoting fiber cell formation. A monoclonal antibody to human Sm-C/IGF-I inhibited purified Sm-C/IGF-I, fetal bovine serum, and chicken vitreous humor from stimulating fiber cell differentiation in vitro. This antibody has been shown not to crossreact with insulin and did not block insulin-stimulated lens fiber formation. These findings indicate that lentropin is related to the IGFs and that these factors may play important roles in controlling cell differentiation, in addition to their better-known ability to stimulate cell division.

Full text

PDF
2327

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Arruti C., Courtois Y. Morphological changes and growth stimulation of bovine epithelial lens cells by a retinal extract in vitro. Exp Cell Res. 1978 Dec;117(2):283–292. doi: 10.1016/0014-4827(78)90142-8. [DOI] [PubMed] [Google Scholar]
  2. Barritault D., Arruti C., Courtois Y. Is there a ubiquitous growth factor in the eye? Proliferation induced in different cell types by eye-derived growth factors. Differentiation. 1981;18(1):29–42. doi: 10.1111/j.1432-0436.1981.tb01101.x. [DOI] [PubMed] [Google Scholar]
  3. Bassas L., de Pablo F., Lesniak M. A., Roth J. Ontogeny of receptors for insulin-like peptides in chick embryo tissues: early dominance of insulin-like growth factor over insulin receptors in brain. Endocrinology. 1985 Dec;117(6):2321–2329. doi: 10.1210/endo-117-6-2321. [DOI] [PubMed] [Google Scholar]
  4. Beebe D. C., Feagans D. E. A tissue culture system for studying lens cell differentiation. Vision Res. 1981;21(1):113–118. doi: 10.1016/0042-6989(81)90143-7. [DOI] [PubMed] [Google Scholar]
  5. Beebe D. C., Feagans D. E., Jebens H. A. Lentropin: a factor in vitreous humor which promotes lens fiber cell differentiation. Proc Natl Acad Sci U S A. 1980 Jan;77(1):490–493. doi: 10.1073/pnas.77.1.490. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Beebe D. C., Piatigorsky J. The control of delta-crystallin gene expression during lens cell development: dissociation of cell elongation, cell division, delta-crystallin synthesis, and delta-crystallin mRNA accumulation. Dev Biol. 1977 Sep;59(2):174–182. doi: 10.1016/0012-1606(77)90252-4. [DOI] [PubMed] [Google Scholar]
  7. Campbell M. T., McAvoy J. W. Onset of fibre differentiation in cultured rat lens epithelium under the influence of neural retina-conditioned medium. Exp Eye Res. 1984 Jul;39(1):83–94. doi: 10.1016/0014-4835(84)90117-9. [DOI] [PubMed] [Google Scholar]
  8. Daughaday W. H., Parker K. A., Borowsky S., Trivedi B., Kapadia M. Measurement of somatomedin-related peptides in fetal, neonatal, and maternal rat serum by insulin-like growth factor (IGF) I radioimmunoassay, IGF-II radioreceptor assay (RRA), and multiplication-stimulating activity RRA after acid-ethanol extraction. Endocrinology. 1982 Feb;110(2):575–581. doi: 10.1210/endo-110-2-575. [DOI] [PubMed] [Google Scholar]
  9. Ewton D. Z., Florini J. R. Effects of the somatomedins and insulin on myoblast differentiation in vitro. Dev Biol. 1981 Aug;86(1):31–39. doi: 10.1016/0012-1606(81)90312-2. [DOI] [PubMed] [Google Scholar]
  10. Florini J. R., Ewton D. Z., Evinger-Hodges M. J., Falen S. L., Lau R. L., Regan J. F., Vertel B. M. Stimulation and inhibition of myoblast differentiation by hormones. In Vitro. 1984 Dec;20(12):942–958. doi: 10.1007/BF02619668. [DOI] [PubMed] [Google Scholar]
  11. Glaser B. M., D'Amore P. A., Michels R. G., Patz A., Fenselau A. Demonstration of vasoproliferative activity from mammalian retina. J Cell Biol. 1980 Feb;84(2):298–304. doi: 10.1083/jcb.84.2.298. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Hintz R. L., Clemmons D. R., Underwood L. E., Van Wyk J. J. Competitive binding of somatomedin to the insulin receptors of adipocytes, chondrocytes, and liver membranes. Proc Natl Acad Sci U S A. 1972 Aug;69(8):2351–2353. doi: 10.1073/pnas.69.8.2351. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Huybrechts L. M., King D. B., Lauterio T. J., Marsh J., Scanes C. G. Plasma concentrations of somatomedin-C in hypophysectomized, dwarf and intact growing domestic fowl as determined by heterologous radioimmunoassay. J Endocrinol. 1985 Feb;104(2):233–239. doi: 10.1677/joe.0.1040233. [DOI] [PubMed] [Google Scholar]
  14. Jansen M., van Schaik F. M., Ricker A. T., Bullock B., Woods D. E., Gabbay K. H., Nussbaum A. L., Sussenbach J. S., Van den Brande J. L. Sequence of cDNA encoding human insulin-like growth factor I precursor. Nature. 1983 Dec 8;306(5943):609–611. doi: 10.1038/306609a0. [DOI] [PubMed] [Google Scholar]
  15. Kohn J., Wilchek M. A new approach (cyano-transfer) for cyanogen bromide activation of Sepharose at neutral pH, which yields activated resins, free of interfering nitrogen derivatives. Biochem Biophys Res Commun. 1982 Aug;107(3):878–884. doi: 10.1016/0006-291x(82)90604-0. [DOI] [PubMed] [Google Scholar]
  16. Kurtz A., Härtl W., Jelkmann W., Zapf J., Bauer C. Activity in fetal bovine serum that stimulates erythroid colony formation in fetal mouse livers is insulinlike growth factor I. J Clin Invest. 1985 Oct;76(4):1643–1648. doi: 10.1172/JCI112149. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Massagué J., Czech M. P. The subunit structures of two distinct receptors for insulin-like growth factors I and II and their relationship to the insulin receptor. J Biol Chem. 1982 May 10;257(9):5038–5045. [PubMed] [Google Scholar]
  18. McAvoy J. W., Fernon V. T. Neural retinas promote cell division and fibre differentiation in lens epithelial explants. Curr Eye Res. 1984 Jun;3(6):827–834. doi: 10.3109/02713688409000795. [DOI] [PubMed] [Google Scholar]
  19. Milstone L. M., Piatigorsky J. Rates of protein synthesis in explanted embryonic chick lens epithelia: differential stimulation of delta-crystallin synthesis. Dev Biol. 1975 Mar;43(1):91–100. doi: 10.1016/0012-1606(75)90133-5. [DOI] [PubMed] [Google Scholar]
  20. Milstone L. M., Piatigorsky J. delta-Crystallin gene expression in embryonic chick lens epithelia cultured in the presence of insulin. Exp Cell Res. 1977 Mar 1;105(1):9–14. doi: 10.1016/0014-4827(77)90147-1. [DOI] [PubMed] [Google Scholar]
  21. Moses A. C., Nissley S. P., Short P. A., Rechler M. M., White R. M., Knight A. B., Higa O. Z. Increased levels of multiplication-stimulating activity, an insulin-like growth factor, in fetal rat serum. Proc Natl Acad Sci U S A. 1980 Jun;77(6):3649–3653. doi: 10.1073/pnas.77.6.3649. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. PHILPOTT G. W., COULOMBRE A. J. LENS DEVELOPMENT. II. THE DIFFERENTIATION OF EMBRYONIC CHICK LENS EPITHELIAL CELLS IN VITRO AND IN VIVO. Exp Cell Res. 1965 Jun;38:635–644. doi: 10.1016/0014-4827(65)90387-3. [DOI] [PubMed] [Google Scholar]
  23. Piatigorsky J. Insulin initiation of lens fiber differentiation in culture: elongation of embryonic lens epithelial cells. Dev Biol. 1973 Jan;30(1):214–216. doi: 10.1016/0012-1606(73)90060-2. [DOI] [PubMed] [Google Scholar]
  24. Piatigorsky J. Lens differentiation in vertebrates. A review of cellular and molecular features. Differentiation. 1981;19(3):134–153. doi: 10.1111/j.1432-0436.1981.tb01141.x. [DOI] [PubMed] [Google Scholar]
  25. Rothstein H., Van Wyk J. J., Hayden J. H., Gordon S. R., Weinsieder A. Somatomedin C: restoration in vivo of cycle traverse in G0/G1 blocked cells of hypophysectomized animals. Science. 1980 Apr 25;208(4442):410–412. doi: 10.1126/science.7189293. [DOI] [PubMed] [Google Scholar]
  26. Russell W. E., Van Wyk J. J., Pledger W. J. Inhibition of the mitogenic effects of plasma by a monoclonal antibody to somatomedin C. Proc Natl Acad Sci U S A. 1984 Apr;81(8):2389–2392. doi: 10.1073/pnas.81.8.2389. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Sara V. R., Hall K., Lins P. E., Fryklund L. Serum levels of immunoreactive somatomedin A in the rat: some developmental aspects. Endocrinology. 1980 Aug;107(2):622–625. doi: 10.1210/endo-107-2-622. [DOI] [PubMed] [Google Scholar]
  28. Veldhuis J. D., Demers L. M. A role for somatomedin C as a differentiating hormone and amplifier of hormone action on ovarian cells: studies with synthetically pure human somatomedin C and swine granulosa cells. Biochem Biophys Res Commun. 1985 Jul 16;130(1):234–240. doi: 10.1016/0006-291x(85)90407-3. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES