Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1987 May;84(9):2886–2890. doi: 10.1073/pnas.84.9.2886

Isolation of cDNA clones for the catalytic gamma subunit of mouse muscle phosphorylase kinase: expression of mRNA in normal and mutant Phk mice.

J S Chamberlain, P VanTuinen, A A Reeves, B A Philip, C T Caskey
PMCID: PMC304765  PMID: 3472241

Abstract

We have isolated and characterized cDNA clones for the gamma subunit of mouse muscle phosphorylase kinase (gamma-Phk). These clones were isolated from a lambda gt11 mouse muscle cDNA library via screening with a synthetic oligonucleotide probe corresponding to a portion of the rabbit gamma-Phk amino acid sequence. The gamma-Phk cDNA clones code for a 387-amino acid protein that shares 93% amino acid sequence identity with the corresponding rabbit amino acid sequence. RNA gel blot analysis reveals that the muscle gamma-Phk probe hybridizes to two mRNA species (2.4 and 1.6 kilobases) in skeletal muscle, cardiac muscle, and brain, but does not hybridize to liver RNA. Phk-deficient I-strain (Phk) mouse muscle contains reduced levels of gamma-Phk mRNA as compared with control mice. Although the Phk defect is an X-linked recessive trait, hybridization to a human-rodent somatic cell hybrid mapping panel shows that the gamma-Phk gene is not located on the X chromosome. Rather, the gamma-Phk cross-hybridizing human restriction fragments map to human chromosomes 7 (multiple) and 11 (single). Reduced gamma-Phk mRNA in I-strain mice, therefore, appears to be a consequence of the Phk-mutant trait and does not stem from a mutant gamma-subunit gene.

Full text

PDF
2887

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Brennand J., Konecki D. S., Caskey C. T. Expression of human and Chinese hamster hypoxanthine-guanine phosphoribosyltransferase cDNA recombinants in cultured Lesch-Nyhan and Chinese hamster fibroblasts. J Biol Chem. 1983 Aug 25;258(16):9593–9596. [PubMed] [Google Scholar]
  2. Burchell A., Cohen T. W., Cohen P. Distribution of isoenzymes of the glycogenolytic cascade in different types of muscle fibre. FEBS Lett. 1976 Aug 1;67(1):17–22. doi: 10.1016/0014-5793(76)80861-7. [DOI] [PubMed] [Google Scholar]
  3. Carlson G. M., Bechtel P. J., Graves D. J. Chemical and regulatory properties of phosphorylase kinase and cyclic AMP-dependent protein kinase. Adv Enzymol Relat Areas Mol Biol. 1979;50:41–115. doi: 10.1002/9780470122952.ch2. [DOI] [PubMed] [Google Scholar]
  4. Chamberlain J. S., Jaynes J. B., Hauschka S. D. Regulation of creatine kinase induction in differentiating mouse myoblasts. Mol Cell Biol. 1985 Mar;5(3):484–492. doi: 10.1128/mcb.5.3.484. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Chen S. H., Van Tuinen P., Ledbetter D. H., Smith L. C., Chan L. Human liver fatty acid binding protein gene is located on chromosome 2. Somat Cell Mol Genet. 1986 May;12(3):303–306. doi: 10.1007/BF01570790. [DOI] [PubMed] [Google Scholar]
  6. Chirgwin J. M., Przybyla A. E., MacDonald R. J., Rutter W. J. Isolation of biologically active ribonucleic acid from sources enriched in ribonuclease. Biochemistry. 1979 Nov 27;18(24):5294–5299. doi: 10.1021/bi00591a005. [DOI] [PubMed] [Google Scholar]
  7. Cohen P. T., Burchell A., Cohen P. The molecular basis of skeletal muscle phosphorylase kinase deficiency. Eur J Biochem. 1976 Jul 1;66(2):347–356. doi: 10.1111/j.1432-1033.1976.tb10524.x. [DOI] [PubMed] [Google Scholar]
  8. Cohen P., Burchell A., Foulkes J. G., Cohen P. T., Vanaman T. C., Nairn C. Identification of the Ca2+-dependent modulator protein as the fourth subunit of rabbit skeletal muscle phosphorylase kinase. FEBS Lett. 1978 Aug 15;92(2):287–293. doi: 10.1016/0014-5793(78)80772-8. [DOI] [PubMed] [Google Scholar]
  9. Daegelen-Proux D., Alexandre Y., Dreyfus J. C. Phosphorylase kinase isoenzymes in deficient ICR/IAn mice. Eur J Biochem. 1978 Oct;90(2):369–375. doi: 10.1111/j.1432-1033.1978.tb12613.x. [DOI] [PubMed] [Google Scholar]
  10. Daegelen-Proux D., Pierres M., Alexandre Y., Dreyfus J. C. Molecular heterogeneity of rabbit heart phosphorylase kinase. Biochim Biophys Acta. 1976 Dec 8;452(2):398–405. doi: 10.1016/0005-2744(76)90189-3. [DOI] [PubMed] [Google Scholar]
  11. Dean M., Park M., Le Beau M. M., Robins T. S., Diaz M. O., Rowley J. D., Blair D. G., Vande Woude G. F. The human met oncogene is related to the tyrosine kinase oncogenes. 1985 Nov 28-Dec 4Nature. 318(6044):385–388. doi: 10.1038/318385a0. [DOI] [PubMed] [Google Scholar]
  12. Durnam D. M., Palmiter R. D. A practical approach for quantitating specific mRNAs by solution hybridization. Anal Biochem. 1983 Jun;131(2):385–393. doi: 10.1016/0003-2697(83)90188-4. [DOI] [PubMed] [Google Scholar]
  13. EPPENBERGER H. M., EPPENBERGER M., RICHTERICH R., AEBI H. THE ONTOGENY OF CREATINE KINASE ISOZYMES. Dev Biol. 1964 Aug;10:1–16. doi: 10.1016/0012-1606(64)90002-8. [DOI] [PubMed] [Google Scholar]
  14. Frizzell R. A., Rechkemmer G., Shoemaker R. L. Altered regulation of airway epithelial cell chloride channels in cystic fibrosis. Science. 1986 Aug 1;233(4763):558–560. doi: 10.1126/science.2425436. [DOI] [PubMed] [Google Scholar]
  15. Grantham R., Gautier C., Gouy M., Jacobzone M., Mercier R. Codon catalog usage is a genome strategy modulated for gene expressivity. Nucleic Acids Res. 1981 Jan 10;9(1):r43–r74. doi: 10.1093/nar/9.1.213-b. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Gross S. R., Mayer S. E. Characterization of the phosphorylase b to a converting activity in skeletal muscle extracts of mice with the phosphorylase b kinase deficiency mutation. J Biol Chem. 1974 Nov 10;249(21):6710–6718. [PubMed] [Google Scholar]
  17. Huijing F. Phosphorylase kinase deficiency. Biochem Genet. 1970 Feb;4(1):187–194. doi: 10.1007/BF00484029. [DOI] [PubMed] [Google Scholar]
  18. Kee S. M., Graves D. J. Isolation and properties of the active gamma subunit of phosphorylase kinase. J Biol Chem. 1986 Apr 5;261(10):4732–4737. [PubMed] [Google Scholar]
  19. Konecki D. S., Brennand J., Fuscoe J. C., Caskey C. T., Chinault A. C. Hypoxanthine-guanine phosphoribosyltransferase genes of mouse and Chinese hamster: construction and sequence analysis of cDNA recombinants. Nucleic Acids Res. 1982 Nov 11;10(21):6763–6775. doi: 10.1093/nar/10.21.6763. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. LYON J. B., Jr, PORTER J. The relation of phosphorylase to glycogenolysis in skeletal muscle and heart of mice. J Biol Chem. 1963 Jan;238:1–11. [PubMed] [Google Scholar]
  21. Ledbetter D. H., Airhart S. D., Nussbaum R. L. Caffeine enhances fragile (X) expression in somatic cell hybrids. Am J Med Genet. 1986 Jan-Feb;23(1-2):445–455. doi: 10.1002/ajmg.1320230136. [DOI] [PubMed] [Google Scholar]
  22. Lederer B., van de Werve G., de Barsy T., Hers H. G. The autosomal form of phosphorylase kinase deficiency in man: reduced activity of the muscle enzyme. Biochem Biophys Res Commun. 1980 Jan 15;92(1):169–174. doi: 10.1016/0006-291x(80)91535-1. [DOI] [PubMed] [Google Scholar]
  23. Ono S. Ancient linkage groups and frozen accidents. Nature. 1973 Aug 3;244(5414):259–262. doi: 10.1038/244259a0. [DOI] [PubMed] [Google Scholar]
  24. Ponte P., Gunning P., Blau H., Kedes L. Human actin genes are single copy for alpha-skeletal and alpha-cardiac actin but multicopy for beta- and gamma-cytoskeletal genes: 3' untranslated regions are isotype specific but are conserved in evolution. Mol Cell Biol. 1983 Oct;3(10):1783–1791. doi: 10.1128/mcb.3.10.1783. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Reimann E. M., Titani K., Ericsson L. H., Wade R. D., Fischer E. H., Walsh K. A. Homology of the gamma subunit of phosphorylase b kinase with cAMP-dependent protein kinase. Biochemistry. 1984 Aug 28;23(18):4185–4192. doi: 10.1021/bi00313a027. [DOI] [PubMed] [Google Scholar]
  26. Sakai K., Matsumura S., Okimura Y., Yamamura H., Nishizuka Y. Liver glycogen phosphorylase kinase. Partial purification and characterization. J Biol Chem. 1979 Jul 25;254(14):6631–6637. [PubMed] [Google Scholar]
  27. Sanger F., Nicklen S., Coulson A. R. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A. 1977 Dec;74(12):5463–5467. doi: 10.1073/pnas.74.12.5463. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Skuster J. R., Chan K. F., Graves D. J. Isolation and properties of the catalytically active gamma subunit of phosphorylase b kinase. J Biol Chem. 1980 Mar 10;255(5):2203–2210. [PubMed] [Google Scholar]
  29. Thomas P. S. Hybridization of denatured RNA and small DNA fragments transferred to nitrocellulose. Proc Natl Acad Sci U S A. 1980 Sep;77(9):5201–5205. doi: 10.1073/pnas.77.9.5201. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Varsányi M., Vrbica A., Heilmeyer L. M., Jr X-linked dominant inheritance of partial phosphorylase kinase deficiency in mice. Biochem Genet. 1980 Apr;18(3-4):247–261. doi: 10.1007/BF00484240. [DOI] [PubMed] [Google Scholar]
  31. Wainwright B. J., Scambler P. J., Schmidtke J., Watson E. A., Law H. Y., Farrall M., Cooke H. J., Eiberg H., Williamson R. Localization of cystic fibrosis locus to human chromosome 7cen-q22. 1985 Nov 28-Dec 4Nature. 318(6044):384–385. doi: 10.1038/318384a0. [DOI] [PubMed] [Google Scholar]
  32. Yanisch-Perron C., Vieira J., Messing J. Improved M13 phage cloning vectors and host strains: nucleotide sequences of the M13mp18 and pUC19 vectors. Gene. 1985;33(1):103–119. doi: 10.1016/0378-1119(85)90120-9. [DOI] [PubMed] [Google Scholar]
  33. Young R. A., Davis R. W. Efficient isolation of genes by using antibody probes. Proc Natl Acad Sci U S A. 1983 Mar;80(5):1194–1198. doi: 10.1073/pnas.80.5.1194. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES